Symplectic Leibniz algebras as a non-commutative version of symplectic Lie algebras

被引:0
|
作者
Abid, Fatima-Ezzahrae [1 ]
Boucetta, Mohamed [1 ]
机构
[1] Univ Cadi Ayyad, Fac Sci & Tech, BP 549, Marrakech, Morocco
关键词
Leibniz algebras; Symplectic Lie algebras; Double extension;
D O I
10.1016/j.jalgebra.2025.03.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce symplectic left Leibniz algebras and symplectic right Leibniz algebras as generalizations of symplectic Lie algebras. These algebras possess a left symmetric product and are Lie-admissible. We describe completely symmetric Leibniz algebras that are symplectic as both left and right Leibniz algebras. Additionally, we show that symplectic left or right Leibniz algebras can be constructed from a symplectic Lie algebra and a vector space through a method that combines the double extension process and the T & lowast;-extension. This approach allows us to generate a broad class of examples. (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:1 / 35
页数:35
相关论文
共 50 条
  • [1] Anti-Leibniz algebras: A non-commutative version of mock-Lie algebras
    Braiek, Safa
    Chtioui, Taoufik
    Mabrouk, Sami
    JOURNAL OF GEOMETRY AND PHYSICS, 2025, 209
  • [2] Symmetric Symplectic Commutative Associative Algebras and Related Lie Algebras
    Baklouti, Amir
    Benayadi, Said
    ALGEBRA COLLOQUIUM, 2011, 18 : 973 - 986
  • [3] Symplectic Novikov Lie algebras
    Aissa, T. Ait
    Mansouri, M. W.
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (07) : 2921 - 2933
  • [4] SYMPLECTIC REFLECTION ALGEBRAS AND AFFINE LIE ALGEBRAS
    Etingof, Pavel
    MOSCOW MATHEMATICAL JOURNAL, 2012, 12 (03) : 543 - 565
  • [5] Flat symplectic Lie algebras
    Boucetta, Mohamed
    El Ouali, Hamza
    Lebzioui, Hicham
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (10) : 4382 - 4399
  • [6] Metric Symplectic Lie Algebras
    Fischer, Mathias
    JOURNAL OF LIE THEORY, 2019, 29 (01) : 191 - 220
  • [7] Structure of symplectic invariant Lie subalgebras of symplectic derivation Lie algebras
    Morita, Shigeyuki
    Sakasai, Takuya
    Suzuki, Masaaki
    ADVANCES IN MATHEMATICS, 2015, 282 : 291 - 334
  • [8] A Basis for Representations of Symplectic Lie Algebras
    A. I. Molev
    Communications in Mathematical Physics, 1999, 201 : 591 - 618
  • [9] Symplectic structures on quadratic Lie algebras
    Bajo, Ignacio
    Benayadi, Said
    Medina, Alberto
    JOURNAL OF ALGEBRA, 2007, 316 (01) : 174 - 188
  • [10] Symplectic structures on the filiform Lie algebras
    Gómez, JR
    Jiménez-Merchán, A
    Khakimdjanov, Y
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 156 (01) : 15 - 31