Intersection non-simple graph of an abelian group

被引:0
|
作者
Hazarika, Nepur Ranjan [1 ]
Barman, Bikash [1 ]
Rajkhowa, Kukil Kalpa [1 ]
Bora, Pallabi [1 ]
机构
[1] Cotton Univ, Dept Math, Gauhati, India
关键词
Simple subgroup; intersection graph; clique number; domination number; girth; planarity;
D O I
10.1142/S1793830924500939
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The intersection non-simple graph, denoted by INS(G), of a finite abelian group G is an undirected graph whose vertex set is the collection of all proper non-trivial subgroups of G, and any two distinct vertices are adjacent if and only if their intersection is not a simple subgroup of G. We obtain some properties of INS(G) related to connectedness, completeness, degree, and girth. The concepts of bipartiteness, triangle-free, cluster, claw-free and cograph are taken into consideration. We also investigate the clique number, independence number, domination number, and planarity of INS(G).
引用
收藏
页数:21
相关论文
共 50 条
  • [41] THERMOELASTIC WAVES IN NON-SIMPLE MEDIA
    CHAKRABARTI, S
    PURE AND APPLIED GEOPHYSICS, 1973, 109 (08) : 1682 - 1692
  • [42] Cone decompositions of non-simple polytopes
    Agapito, Jose
    Godinho, Leonor
    JOURNAL OF SYMPLECTIC GEOMETRY, 2016, 14 (03) : 737 - 766
  • [43] ON THERMOSTATICS OF NON-SIMPLE MATERIALS WITH MEMORY
    BEEVERS, CE
    SILHAVY, M
    JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 1989, 14 (01) : 83 - 97
  • [44] Microcracked materials as non-simple continua
    Trovalusci, Patrizia
    Varano, Valerio
    THERMEC 2009, PTS 1-4, 2010, 638-642 : 2749 - +
  • [45] ON FOUNDATIONS OF DYNAMICS OF NON-SIMPLE BODIES
    WOZNIAK, C
    ARCHIWUM MECHANIKI STOSOWANEJ, 1967, 19 (06): : 823 - &
  • [46] A NOTE ON NON-SIMPLE HEAT CONDUCTION
    CHEN, PJ
    GURTIN, ME
    WILLIAMS, WO
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1968, 19 (06): : 969 - &
  • [47] THERMOELASTICITY OF NON-SIMPLE ORIENTED MATERIALS
    WOZNIAK, C
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1967, 5 (08) : 605 - &
  • [48] NON-SIMPLE PURELY INFINITE RINGS
    Aranda Pino, A.
    Goodearl, K. R.
    Perera, F.
    Siles Molina, M.
    AMERICAN JOURNAL OF MATHEMATICS, 2010, 132 (03) : 563 - 610
  • [49] Various looks on non-simple words
    McLelland, Nicola
    HISTORIOGRAPHIA LINGUISTICA, 2010, 37 (03) : 434 - 438
  • [50] THEORY OF THERMOELASTICITY OF NON-SIMPLE MATERIALS
    WOZNIAK, C
    ARCHIWUM MECHANIKI STOSOWANEJ, 1967, 19 (04): : 485 - &