Artificial organic-inorganic hybrid interface enables reversible Zn anodes

被引:0
|
作者
Mu, Tiansheng [1 ,2 ]
Lu, Hongfu [1 ]
Wang, Hui [2 ]
Wang, Yuanheng [1 ]
Lou, Shuaifeng [1 ]
Zhang, Yongchao [2 ]
Gao, Jian [2 ]
Ma, Yulin [1 ]
Zuo, Pengjian [1 ]
Zhu, Xiaodong [2 ]
Yin, Geping [1 ]
机构
[1] Harbin Inst Technol, State Key Lab Space Power & Sources, Harbin 150001, Peoples R China
[2] Qingdao Univ Sci & Technol, Sch Chem Engn, Qingdao 266042, Peoples R China
基金
中国国家自然科学基金;
关键词
Zn anode; Hybrid interface; MLD; Zn Dendrites; Pouch cell; FUNCTIONALIZATION;
D O I
10.1016/j.nanoen.2025.110835
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Commercial application of Zn metal anodes is severely hindered by uncontrollable dendrites and unfriendly side reactions. Herein, an artificial organic-inorganic hybrid interface (defined as H-PA) is designed and constructed through layer-by-layer stacking of Al2O3 and polyurea at molecule-atom level. Experiments and theoretical calculations show the H-PA fragment electronegativity and electron-donating sites corresponding to polar groups are beneficial for coordinating with Zn ions, thereby exhibiting favorable zincophilic properties and fast Zn ion transport/de-solvation kinetics. Simultaneously, the H-PA interface can reduce Zn atom diffusion barrier and limit hydrogen evolution reaction. As a consequence, the H-PA interface with mechanical stability can not only regulate uniform Zn ions flux, but also inhibit side reactions. The Zn@H-PA anode exhibits outstanding electrochemical reversibility with a long service life of 5800 h at 1.0 mA cm- 2 with 1.0 mAh cm- 2 and 5000 h at 2.0 mA cm- 2 with 2.0 mAh cm- 2. Meanwhile, the VO2//Zn@H-PA cell displays superior cycling stability and rate capability. Moreover, the pouch cell shows an excellent cycle performance with 90 % capacity retention after 100 cycles even at lean electrolyte (E/C ratio= 15 mu L mAh- 1), limited Zn supply (N/P ratio= 4.5). More importantly, this hybrid strategy at atomic-molecular level provides a reference idea for artificial protective layer design of batteries.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Hybrid Organic-Inorganic Photovoltaics
    Ahmad, Shahzada
    Nazeeruddin, Mohammad Khaja
    Bisquert, Juan
    CHEMPHYSCHEM, 2014, 15 (06) : 987 - 989
  • [22] Hybrid Organic-Inorganic Antiperovskites
    Shi, Chao
    Yu, Hui
    Wang, Qin-Wen
    Ye, Le
    Gong, Zhi-Xin
    Ma, Jia-Jun
    Jiang, Jia-Ying
    Hua, Miao-Miao
    Shuai, Cijun
    Zhang, Yi
    Ye, Heng-Yun
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (01) : 167 - 171
  • [23] Hybrid organic-inorganic composites
    1600, ACS, Washington, DC, USA (117):
  • [24] Organic-Inorganic Hybrid Nanomaterials
    Ananikov, Valentine P.
    NANOMATERIALS, 2019, 9 (09)
  • [25] Organic-inorganic hybrid networks
    Matejka, L
    Dukh, O
    MACROMOLECULAR SYMPOSIA, 2001, 171 : 181 - 188
  • [27] Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells
    Goh, Chiatzun
    Scully, Shawn R.
    McGehee, Michael D.
    JOURNAL OF APPLIED PHYSICS, 2007, 101 (11)
  • [28] Organic-Inorganic Hybrid Halide Perovskites for Memories, Transistors, and Artificial Synapses
    Choi, Jaeho
    Han, Ji Su
    Hong, Kootak
    Kim, Soo Young
    Jang, Ho Won
    ADVANCED MATERIALS, 2018, 30 (42)
  • [29] Halogen-Modulated Reversible Phase Transition in Organic-Inorganic Hybrid Perovskites
    Teri, Gele
    Wang, Jun-Qin
    Ni, Hao-Fei
    Jia, Qiang-Qiang
    Xie, Li-Yan
    Fu, Da-Wei
    Guo, Qiang
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2023, 26 (05)
  • [30] Spectromicroscopy at the organic-inorganic interface in biominerals
    De Stasio, G
    Schmitt, MA
    Gellman, SH
    AMERICAN JOURNAL OF SCIENCE, 2005, 305 (6-8) : 673 - 686