机构:
Chinese Acad Sci, Xinjiang Astron Observ, Urumqi, Xinjiang, Peoples R ChinaChinese Acad Sci, Xinjiang Astron Observ, Urumqi, Xinjiang, Peoples R China
Gao, Zhi-Fu
[1
]
Zhao, Xin-Jun
论文数: 0引用数: 0
h-index: 0
机构:
Yili Normal Univ, Coll Phys Sci & Technol, Xinjiang Lab Phase Transit & Microstruct Condensed, Ili, Xinjiang, Peoples R China
Yili Normal Univ, Lab Micronano Electro Biosensors & Bion Devices, Ili, Xinjiang, Peoples R ChinaChinese Acad Sci, Xinjiang Astron Observ, Urumqi, Xinjiang, Peoples R China
Zhao, Xin-Jun
[2
,3
]
Yang, Xiao-Feng
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Xinjiang Astron Observ, Urumqi, Xinjiang, Peoples R ChinaChinese Acad Sci, Xinjiang Astron Observ, Urumqi, Xinjiang, Peoples R China
Yang, Xiao-Feng
[1
]
Ma, Wen-Qi
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Xinjiang Astron Observ, Urumqi, Xinjiang, Peoples R China
Univ Chinese Acad Sci, Sch Astron & Space Sci, Beijing, Peoples R ChinaChinese Acad Sci, Xinjiang Astron Observ, Urumqi, Xinjiang, Peoples R China
Ma, Wen-Qi
[1
,4
]
Hu, Zi-Rui
论文数: 0引用数: 0
h-index: 0
机构:
Brown Univ, Dept Phys, Providence, RI USAChinese Acad Sci, Xinjiang Astron Observ, Urumqi, Xinjiang, Peoples R China
Hu, Zi-Rui
[5
]
机构:
[1] Chinese Acad Sci, Xinjiang Astron Observ, Urumqi, Xinjiang, Peoples R China
[2] Yili Normal Univ, Coll Phys Sci & Technol, Xinjiang Lab Phase Transit & Microstruct Condensed, Ili, Xinjiang, Peoples R China
[3] Yili Normal Univ, Lab Micronano Electro Biosensors & Bion Devices, Ili, Xinjiang, Peoples R China
[4] Univ Chinese Acad Sci, Sch Astron & Space Sci, Beijing, Peoples R China
field equation;
Gauss-Bonnet gravity;
ghost-free modifications;
quantum gravity consistency;
D O I:
10.1002/asna.20250027
中图分类号:
P1 [天文学];
学科分类号:
0704 ;
摘要:
This work provides a comprehensive analysis of modifications to the Einstein-Hilbert action, with a particular focus on Gauss-Bonnet (GB) gravity, and addresses the theoretical challenges in unifying quantum gravity frameworks with the GB gravitational modifications. By developing a novel fourth-order tensor methodology to manage derivative couplings, we establish a stable framework that eliminates higher-order derivative instabilities while enabling modified gravitational phenomena. The model maintains consistency with low-energy string theory constraints and generates testable predictions for black hole thermodynamics and cosmic expansion dynamics. Our results reconcile discrepancies between modified gravity theories and quantum field theory requirements, providing new mathematical tools for analyzing high-energy gravitational interactions. This work bridges critical gaps between theoretical formulations and observational evidence in cosmology, offering a unified approach to modeling gravitational interactions across quantum and cosmological scales.