MAXIMAL PARAHORIC ARITHMETIC TRANSFERS, RESOLUTIONS AND MODULARITY

被引:0
|
作者
Zhang, Zhiyu [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
FUNDAMENTAL LEMMA; SHIMURA VARIETIES; EISENSTEIN SERIES; CYCLES; DERIVATIVES; REDUCTION; FORMULA; THEOREM; CURVES;
D O I
10.1215/00127094-2024-0023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any unramified quadratic extension of p-adic local fields F/F0 (p odd), we formulate several arithmetic transfer conjectures at any maximal parahoric level, in the context of Zhang's relative trace formula approach to the arithmetic Gan- Gross-Prasad conjecture. The formulation involves a way to resolve the singularity of relevant moduli spaces via natural stratifications and modify derived fixed points. By a local-global method and double induction, we prove these conjectures when F0/Qp is unramified and the arithmetic fundamental lemma for any F0. We introduce the relative Cayley map and also establish explicit Jacquet-Rallis transfers at maximal parahoric levels. Moreover, we prove new modularity results for arithmetic theta series with levels via a method of modification over fibers. Along the way, we study the complex and mod p geometry of Shimura varieties and special cycles.
引用
收藏
页码:1 / 129
页数:129
相关论文
共 50 条
  • [1] Maximal minimal resolutions
    Iyengar, S
    Pardue, K
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1999, 512 : 27 - 48
  • [2] LANGLANDS PARAMETERS ASSOCIATED TO SPECIAL MAXIMAL PARAHORIC SPHERICAL REPRESENTATIONS
    Mishra, Manish
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (05) : 1933 - 1941
  • [3] MAXIMAL ARITHMETIC GROUPS
    ROHLFS, J
    MATHEMATISCHE ANNALEN, 1978, 234 (03) : 239 - 252
  • [4] THE ARITHMETIC OF MAXIMAL PLANES
    KRISHNAMURTI, R
    ENVIRONMENT AND PLANNING B-PLANNING & DESIGN, 1992, 19 (04): : 431 - 464
  • [5] Maximal modularity and the optimal size of parliaments
    Gamberi, Luca
    Forster, Yanik-Pascal
    Tzanis, Evan
    Annibale, Alessia
    Vivo, Pierpaolo
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [6] Maximal modularity and the optimal size of parliaments
    Luca Gamberi
    Yanik-Pascal Förster
    Evan Tzanis
    Alessia Annibale
    Pierpaolo Vivo
    Scientific Reports, 11
  • [7] Globally maximal arithmetic groups
    Gross, BH
    Nebe, G
    JOURNAL OF ALGEBRA, 2004, 272 (02) : 625 - 642
  • [8] On the maximal length of arithmetic progressions
    Zhao, Minzhi
    Zhang, Huizeng
    ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 : 1 - 21
  • [9] Counting maximal arithmetic subgroups
    Belolipetsky, Mikhail
    Ellenberg, Jordan
    Venkatesh, Akshay
    DUKE MATHEMATICAL JOURNAL, 2007, 140 (01) : 1 - 33
  • [10] Torsion in maximal arithmetic Fuchsian groups
    Maclachlan, C.
    COMBINATORIAL GROUP THEORY, DISCRETE GROUPS, AND NUMBER THEORY, 2006, 421 : 213 - 225