Low-velocity impact response and damage mechanism of cosine function cell-based lattice core sandwich panels

被引:1
|
作者
Zhu, Guohua [1 ]
Ren, Haoqian [1 ]
Wang, Zhen [1 ]
Wei, Lulu [2 ]
Zhao, Xuan [1 ]
机构
[1] Changan Univ, Sch Automobile, Xian 710018, Peoples R China
[2] Xian Univ Architecture & Technol, Sch Mech & Elect Engn, Xian 710055, Peoples R China
基金
中国博士后科学基金;
关键词
Sandwich panels; Lattice materials; Low-velocity impact; Energy absorption; ALUMINUM-FOAM CORE; BEHAVIOR; PLATES; BEAMS; INDENTATION; COMPRESSION;
D O I
10.1016/j.tws.2024.112499
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study aims to investigate the impact response and damage mechanism of cosine-function cell-based (CFCB) lattice core sandwich panels. Several low-velocity impact tests were conducted to explore their advantages in impact resistance by comparing them with traditional body-centered cubic (BCC) lattice-core sandwich panels. The impact response and deformation patterns of CFCB lattice core sandwich panels with two different faceplate materials (aluminum alloy and carbon fiber reinforced plastic composite) were experimentally investigated. The CFCB lattice core sandwich panels exhibited higher impact resistance and energy absorption capacity than their BCC lattice core counterparts. Furthermore, sandwich panels with aluminum alloy faceplates provided better impact resistance capacity than those with CFRP faceplates. Subsequently, several numerical models were developed to explore the deformation mechanisms and energy absorption characteristics of CFCB lattice core sandwich panels. In addition, the effects of the core structural parameters on mechanical performance were numerically investigated. Results indicated that increasing the cell rod diameter and/or reducing the cosine period length could decrease the indentation depth and enhance crush force efficiency. Finally, based on the principle of minimum potential energy, a theoretical model was developed to predict the initial peak load of CFCB lattice core sandwich panels with isotropic faceplates. This study aimed to explore the impact response and provide design guidance for CFCB lattice core sandwich panels.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Low-Velocity Impact Damage Quantification on Sandwich Panels by Thermographic and Ultrasonic Procedures
    A. Pirinu
    A. Saponaro
    R. Nobile
    F. W. Panella
    Experimental Techniques, 2024, 48 : 299 - 322
  • [22] Low-Velocity Impact Damage Quantification on Sandwich Panels by Thermographic and Ultrasonic Procedures
    Pirinu, A.
    Saponaro, A.
    Nobile, R.
    Panella, F. W.
    EXPERIMENTAL TECHNIQUES, 2024, 48 (02) : 299 - 322
  • [23] Damage Characterization of Polypropylene Honeycomb Sandwich Panels Subjected to Low-Velocity Impact
    Amir, Freeda A.
    Othman, A. R.
    Akil, H. Md.
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2013, 2013
  • [24] Low-velocity impact response of wood-strand sandwich panels and their components
    Mohammadabadi, Mostafa
    Yadama, Vikram
    Yao, LiHong
    Bhattacharyya, Debes
    HOLZFORSCHUNG, 2018, 72 (08) : 681 - 689
  • [25] LOW-VELOCITY IMPACT RESPONSE OF FOAM-CORE SANDWICH COMPOSITES
    NEMES, JA
    SIMMONDS, KE
    JOURNAL OF COMPOSITE MATERIALS, 1992, 26 (04) : 500 - 519
  • [26] Low-velocity impact response of sandwich beams with functionally graded core
    Apetre, NA
    Sankar, BV
    Ambur, DR
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2006, 43 (09) : 2479 - 2496
  • [27] Effect of core materials on the low-velocity impact behaviour of trapezoidal corrugated sandwich panels
    Rong, Yu
    Luo, Wei
    Liu, Jingxi
    Shen, Zhiyuan
    He, Wentao
    INTERNATIONAL JOURNAL OF CRASHWORTHINESS, 2020, 25 (05) : 505 - 516
  • [28] On the structural parameters of honeycomb-core sandwich panels against low-velocity impact
    Sun, Guangyong
    Huo, Xintao
    Wang, Hongxu
    Hazell, Paul J.
    Li, Qing
    COMPOSITES PART B-ENGINEERING, 2021, 216
  • [29] Dynamic models for low-velocity impact damage of composite sandwich panels - Part A: Deformation
    Fatt, MSH
    Park, KS
    COMPOSITE STRUCTURES, 2001, 52 (3-4) : 335 - 351
  • [30] Damage propagation behavior of composite honeycomb sandwich panels under low-velocity impact
    Xie, Zonghong
    Su, Ni
    Zhang, Lei
    Zhao, Jian
    Li, Lei
    Wei, Hongyan
    Wang, Jian
    Yang, Shengchun
    Nanjing Hangkong Hangtian Daxue Xuebao/Journal of Nanjing University of Aeronautics and Astronautics, 2009, 41 (01): : 30 - 35