Tea Bud Detection Model in a Real Picking Environment Based on an Improved YOLOv5

被引:2
|
作者
Li, Hongfei [1 ]
Kong, Min [1 ,2 ]
Shi, Yun [2 ]
机构
[1] Anhui Polytech Univ, Sch Elect Engn, Wuhu 241000, Peoples R China
[2] West Anhui Univ, Sch Elect & Photoelect Engn, Luan 237012, Peoples R China
关键词
tea bud detection; YOLOv5; deep learning; bidirectional feature pyramid;
D O I
10.3390/biomimetics9110692
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The detection of tea bud targets is the foundation of automated picking of premium tea. This article proposes a high-performance tea bud detection model to address issues such as complex environments, small target tea buds, and blurry device focus in tea bud detection. During the spring tea-picking stage, we collect tea bud images from mountainous tea gardens and annotate them. YOLOv5 tea is an improvement based on YOLOv5, which uses the efficient Simplified Spatial Pyramid Pooling Fast (SimSPPF) in the backbone for easy deployment on tea bud-picking equipment. The neck network adopts the Bidirectional Feature Pyramid Network (BiFPN) structure. It fully integrates deep and shallow feature information, achieving the effect of fusing features at different scales and improving the detection accuracy of focused fuzzy tea buds. It replaces the independent CBS convolution module in traditional neck networks with Omni-Dimensional Dynamic Convolution (ODConv), processing different weights from spatial size, input channel, output channel, and convolution kernel to improve the detection of small targets and occluded tea buds. The experimental results show that the improved model has improved precision, recall, and mean average precision by 4.4%, 2.3%, and 3.2%, respectively, compared to the initial model, and the inference speed of the model has also been improved. This study has theoretical and practical significance for tea bud harvesting in complex environments.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Outdoor Garbage Detection Based on Improved YOLOv5
    Chen Shengxuan
    Wang Aimin
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (22)
  • [42] Fish detection method based on improved YOLOv5
    Lei Li
    Guosheng Shi
    Tao Jiang
    Aquaculture International, 2023, 31 : 2513 - 2530
  • [43] Helmet detection method based on improved YOLOv5
    Hou G.
    Chen Q.
    Yang Z.
    Zhang Y.
    Zhang D.
    Li H.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2024, 46 (02): : 329 - 342
  • [44] An Improved UAV Detection Method Based on YOLOv5
    Liu, Xinfeng
    Chen, Mengya
    Li, Chenglong
    Tian, Jie
    Zhou, Hao
    Ullah, Inam
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT I, 2023, 14086 : 739 - 750
  • [45] Driver Attention Detection Based on Improved YOLOv5
    Wang, Zhongzhou
    Yao, Keming
    Guo, Fuao
    APPLIED SCIENCES-BASEL, 2023, 13 (11):
  • [46] Hand target detection based on improved YOLOv5
    Xu Z.
    Meng J.
    Fang J.
    International Journal of Wireless and Mobile Computing, 2023, 25 (04) : 353 - 361
  • [47] Insulator Breakage Detection Based on Improved YOLOv5
    Han, Gujing
    He, Min
    Gao, Mengze
    Yu, Jinyun
    Liu, Kaipei
    Qin, Liang
    SUSTAINABILITY, 2022, 14 (10)
  • [48] Pedestrian detection method based on improved YOLOv5
    You, Shangtao
    Gu, Zhengchao
    Zhu, Kai
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2024, 12 (01)
  • [49] Traffic Sign Detection Based on the Improved YOLOv5
    Zhang, Rongyun
    Zheng, Kunming
    Shi, Peicheng
    Mei, Ye
    Li, Haoran
    Qiu, Tian
    APPLIED SCIENCES-BASEL, 2023, 13 (17):
  • [50] Lightweight tea bud recognition network integrating GhostNet and YOLOv5
    Cao, Miaolong
    Fu, Hao
    Zhu, Jiayi
    Cai, Chenggang
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (12) : 12897 - 12914