Generalized Sumudu transform and tempered ξ-Caputo fractional derivative

被引:0
|
作者
Elkhalloufy, Khadija [1 ]
Hilal, Khalid [1 ]
Kajouni, Ahmed [1 ]
机构
[1] Sultan Moulay Slimane Univ, Lab Appl Math & Sci Comp, Beni Mellal 23000, Morocco
关键词
Sumudu transform; tempered xi-fractional derivative; initial value problem; DIFFERENTIAL-EQUATIONS;
D O I
10.2298/FIL2426213E
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper applied the generalized Sumudu transform to the tempered xi-Hilfer fractional integral and the tempered xi-Caputo fractional derivative. Our findings are utilized to address non homogeneous linear fractional differential equations in an initial value problem involving the tempered xi-Caputo fractional derivative of an order zeta for n - 1 < zeta < n is an element of N. An example is provided for 0 < zeta < 1.
引用
收藏
页码:9213 / 9221
页数:9
相关论文
共 50 条
  • [41] Incomplete Caputo fractional derivative operators
    Ozarslan, Mehmet Ali
    Ustaoglu, Ceren
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [42] A Fast Algorithm for the Caputo Fractional Derivative
    Wang, Kun
    Huang, Jizu
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2018, 8 (04) : 656 - 677
  • [43] Unexpected behavior of Caputo fractional derivative
    Lucas Kenjy Bazaglia Kuroda
    Arianne Vellasco Gomes
    Robinson Tavoni
    Paulo Fernando de Arruda Mancera
    Najla Varalta
    Rubens de Figueiredo Camargo
    Computational and Applied Mathematics, 2017, 36 : 1173 - 1183
  • [44] Generalized GL Fractional Derivative and its Laplace and Fourier Transform
    Ortigueira, Manuel D.
    Trujillo, Juan J.
    PROCEEDINGS OF ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 4, PTS A-C, 2010, : 1227 - 1231
  • [45] Ulam stabilities of nonlinear coupled system of fractional differential equations including generalized Caputo fractional derivative
    Nabil, Tamer
    AIMS MATHEMATICS, 2021, 6 (05): : 5088 - 5105
  • [46] Incomplete Caputo fractional derivative operators
    Mehmet Ali Özarslan
    Ceren Ustaoglu
    Advances in Difference Equations, 2018
  • [47] Fractional Telegraph Equation with the Caputo Derivative
    Ashurov, Ravshan
    Saparbayev, Rajapboy
    FRACTAL AND FRACTIONAL, 2023, 7 (06)
  • [48] Caputo fractional derivative of α-fractal spline
    Priyanka, T. M. C.
    Gowrisankar, A.
    Prasad, M. Guru Prem
    Liang, Yongshun
    Cao, Jinde
    NUMERICAL ALGORITHMS, 2024,
  • [49] Unexpected behavior of Caputo fractional derivative
    Bazaglia Kuroda, Lucas Kenjy
    Gomes, Arianne Vellasco
    Tavoni, Robinson
    de Arruda Mancera, Paulo Fernando
    Varalta, Najla
    Camargo, Rubens de Figueiredo
    COMPUTATIONAL & APPLIED MATHEMATICS, 2017, 36 (03): : 1173 - 1183
  • [50] Initialization issues of the Caputo fractional derivative
    Achar, B. N. Narahari
    Lorenzo, Carl F.
    Hartley, Tom T.
    Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol 6, Pts A-C, 2005, : 1449 - 1456