Steel design based on a large language model

被引:1
|
作者
Tian, Shaohan [1 ]
Jiang, Xue [1 ,2 ]
Wang, Weiren [1 ]
Jing, Zhihua [1 ]
Zhang, Chi [1 ]
Zhang, Cheng [1 ]
Lookman, Turab [3 ]
Su, Yanjing [1 ]
机构
[1] Univ Sci & Technol Beijing, Inst Adv Mat & Technol, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing 100083, Peoples R China
[2] Liaoning Acad Mat, Shenyang 110000, Liaoning, Peoples R China
[3] AiMaterials Res LLC, Santa Fe, NM 87501 USA
基金
中国国家自然科学基金;
关键词
Property prediction; Steel design; Materials language model; Deep learning; Artificial intelligence; MACHINE; STRENGTH;
D O I
10.1016/j.actamat.2024.120663
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The success of artificial intelligence (AI) in materials research heavily relies on the integrity of structured data and the construction of precise descriptors. In this study, we present an end-to-end pipeline from materials text to properties for steels based on a large language model. The objective is to enable quantitative predictions of properties with high-accuracy and explore new steels. The pipeline includes a materials language encoder, named SteelBERT, and a multimodal deep learning framework that maps the composition and text sequence of complex fabrication processes to mechanical properties. We demonstrate high accuracy on mechanical properties, including yield strength (YS), ultimate tensile strength (UTS), and elongation (EL) by predicting determination coefficients (R2) reaching 78.17 % ( f 3.40 %), 82.56 % ( f 1.96 %), and 81.44 % ( f 2.98 %) respectively. Further, through an additional fine-tuning strategy for the design of specific steels with small datasets, we show how the performance can be refined. With only 64 experimental samples of 15Cr austenitic stainless steels, we obtain an optimized model with R2 of 89.85 % ( f 6.17 %), 88.34 % ( f 5.95 %) and 87.24 % ( f 5.15 %) for YS, UTS and EL, that requires the user to input composition and text sequence for processing and which outputs mechanical properties. The model efficiently optimizes the text sequence for the fabrication process by suggesting a secondary round of cold rolling and tempering to yield an exceptional YS of 960 MPa, UTS of 1138 MPa, and EL of 32.5 %, exceeding those of reported 15Cr austenitic stainless steels.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] NLP4ReF: Requirements Classification and Forecasting: From Model-Based Design to Large Language Models
    Peer, Jordan
    Mordecai, Yaniv
    Reich, Yoram
    2024 IEEE AEROSPACE CONFERENCE, 2024,
  • [42] A Language Model-Based Design of Reduced Phoneme Set for Acoustic Model
    Komeiji, Shuji
    Tanakat, Toshihisa
    2019 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2019, : 192 - 197
  • [43] A Large Language Model Agent Based Legal Assistant for Governance Applications
    Mamalis, Marios Evangelos
    Kalampokis, Evangelos
    Fitsilis, Fotios
    Theodorakopoulos, Georgios
    Tarabanis, Konstantinos
    ELECTRONIC GOVERNMENT, EGOV 2024, 2024, 14841 : 286 - 301
  • [44] Chinese Generation and Security Index Evaluation Based on Large Language Model
    Zhang, Yu
    Gao, Yongbing
    Li, Weihao
    Su, Zirong
    Yang, Lidong
    2024 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING, IALP 2024, 2024, : 151 - 161
  • [45] UnrealMentor GPT: A System for Teaching Programming Based on a Large Language Model
    Zhu, Hongli
    Xiang, Jian
    Yang, Zhichuang
    COMPUTER APPLICATIONS IN ENGINEERING EDUCATION, 2025, 33 (03)
  • [46] Large language model-based evolutionary optimizer: Reasoning with elitism
    Brahmachary, Shuvayan
    Joshi, Subodh M.
    Panda, Aniruddha
    Koneripalli, Kaushik
    Sagotra, Arun Kumar
    Patel, Harshil
    Sharma, Ankush
    Jagtap, Ameya D.
    Kalyanaraman, Kaushic
    NEUROCOMPUTING, 2025, 622
  • [47] A Metric-Based Detection System for Large Language Model Texts
    Le, Linh
    Iran, Dung
    ACM TRANSACTIONS ON MANAGEMENT INFORMATION SYSTEMS, 2025, 16 (01)
  • [48] The Robot's Understanding of Classification Concepts Based on Large Language Model
    Shi, Bao
    Cai, Haiyang
    Gao, Hui
    Ou, Yongsheng
    Wang, Degang
    2024 IEEE INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND ITS SOCIAL IMPACTS, ARSO, 2024, : 122 - 127
  • [49] Telecom user churn prediction scheme based on large language model
    Chen Hao
    Yang Liu
    Ma Chao
    Wei Yifei
    The Journal of China Universities of Posts and Telecommunications, 2024, 31 (06) : 57 - 65+94
  • [50] Knowledge graph of agricultural engineering technology based on large language model
    Wang, Haowen
    Zhao, Ruixue
    DISPLAYS, 2024, 85