RAMAN-BASED MACHINE LEARNING PLATFORM REVEALS UNIQUE METABOLIC DIFFERENCES BETWEEN IDHMUT AND IDHWT GLIOMA

被引:0
|
作者
Lita, Adrian [1 ]
Sjoberg, Joel [2 ]
Pacioianu, David [3 ]
Celiku, Orieta [1 ]
Dowdy, Tyrone [1 ]
Paun, Andrei [3 ,4 ]
Gilbert, Mark R. [1 ]
Noushmehr, Houtan [5 ]
Petre, Ion [2 ]
Larion, Mioara [1 ]
机构
[1] NCI, NIH, Neurooncol Branch, Bethesda, MD USA
[2] Univ Turku, Dept Math & Stat, Turku, Finland
[3] Univ Bucharest, Fac Math & Comp Sci, Bucharest, Romania
[4] Natl Inst Res & Dev Biol Sci, Dept Bioinformat, Bucharest, Romania
[5] Henry Ford Hlth Syst, Dept Neurosurg, Detroit, MI USA
关键词
D O I
10.1093/neuonc/noae165.0754
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
PATH-55
引用
收藏
页数:1
相关论文
共 35 条
  • [21] Using machine learning-based radiomics to differentiate between glioma and solitary brain metastasis from lung cancer and its subtypes
    Zhu, Feng-Ying
    Sun, Yu-Feng
    Yin, Xiao-Ping
    Zhang, Yu
    Xing, Li-Hong
    Ma, Ze-Peng
    Xue, Lin-Yan
    Wang, Jia-Ning
    DISCOVER ONCOLOGY, 2023, 14 (01)
  • [22] Explainable machine learning approach to predict and explain the relationship between task-based fMRI and individual differences in cognition
    Pat, Narun
    Wang, Yue
    Bartonicek, Adam
    Candia, Julian
    Stringaris, Argyris
    CEREBRAL CORTEX, 2023, 33 (06) : 2682 - 2703
  • [23] Machine Learning-Based Prediction of Glioma IDH Gene Mutation Status Using Physio-Metabolic MRI of Oxygen Metabolism and Neovascularization (A Bicenter Study)
    Stadlbauer, Andreas
    Nikolic, Katarina
    Oberndorfer, Stefan
    Marhold, Franz
    Kinfe, Thomas M.
    Meyer-Base, Anke
    Bistrian, Diana Alina
    Schnell, Oliver
    Doerfler, Arnd
    CANCERS, 2024, 16 (06)
  • [24] The Relationship Between Computerized Face and Tongue Image Segmentation and Metabolic Parameters in Patients with Type 2 Diabetes Based on Machine Learning
    Wen, Song
    Li, Yanyan
    Xu, Chenglin
    Jin, Jianlan
    Xu, Zhimin
    Yuan, Yue
    Chen, Lijiao
    Ren, Yishu
    Gong, Min
    Wang, Congcong
    Dong, Meiyuan
    Zhou, Yingfan
    Yuan, Xinlu
    Li, Fufeng
    Zhou, Ligang
    DIABETES METABOLIC SYNDROME AND OBESITY, 2024, 17 : 4049 - 4068
  • [25] Machine-learning based deep immunephenotyping for the identification of commonalities and differences between type 1 diabetes and other autoimmune diseases
    Vera-Ramos, Jose
    Stanzer, Stefanie
    Pfeifer, Verena
    Lopez-Garcia, Pablo
    Herbsthofer, Laurin
    Pieber, Thomas R.
    Prietl, Barbara
    WIENER KLINISCHE WOCHENSCHRIFT, 2021, 133 (SUPPL 6) : 230 - 230
  • [26] Machine learning-based integration of omics and clinical data reveals an N-glycan biosynthesis signature predictive of the outcome in low-grade glioma: an in silico study
    Zhu, Yihao
    Geng, Liangyuan
    Bo, Fuduo
    Xu, Yang
    Wei, Jindou
    Zhang, Yansong
    Qian, Chunfa
    JOURNAL OF CANCER METASTASIS AND TREATMENT, 2024, 10
  • [27] Predicting the risk category of thymoma with machine learning-based computed tomography radiomics signatures and their between-imaging phase differences
    Liang, Zhu
    Li, Jiamin
    Tang, Yihan
    Zhang, Yaxuan
    Chen, Chunyuan
    Li, Siyuan
    Wang, Xuefeng
    Xu, Xinyan
    Zhuang, Ziye
    He, Shuyan
    Deng, Biao
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [28] Textural differences between renal cell carcinoma subtypes: Machine learning-based quantitative computed tomography texture analysis with independent external validation
    Kocak, Burak
    Yardimci, Aytul Hande
    Bektas, Ceyda Turan
    Turkcanoglu, Mehmet Hamza
    Erdim, Cagri
    Yucetas, Ugur
    Koca, Sevim Baykal
    Kilickesmez, Ozgur
    EUROPEAN JOURNAL OF RADIOLOGY, 2018, 107 : 149 - 157
  • [29] Predicting the risk category of thymoma with machine learning-based computed tomography radiomics signatures and their between-imaging phase differences (vol 14, 19215, 2024)
    Liang, Zhu
    Li, Jiamin
    Tang, Yihan
    Zhang, Yaxuan
    Chen, Chunyuan
    Li, Siyuan
    Wang, Xuefeng
    Xu, Xinyan
    Zhuang, Ziye
    He, Shuyan
    Deng, Biao
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [30] Deep learning-based image analysis reveals significant differences in the number and distribution of mucosal CD3 and γδ T cells between Crohn's disease and ulcerative colitis
    Royset, Elin Synnove
    Sahlin Pettersen, Henrik P.
    Xu, Weili
    Larbi, Anis
    Sandvik, Arne K.
    Steigen, Sonja E.
    Catalan-Serra, Ignacio
    Bakke, Ingunn
    JOURNAL OF PATHOLOGY CLINICAL RESEARCH, 2023, 9 (01): : 18 - 31