Conditional Sampling with Monotone GANs: From Generative Models to Likelihood-Free Inference

被引:5
|
作者
Baptista, Ricardo [1 ]
Hosseini, Bamdad [2 ]
Kovachki, Nikola B. [3 ]
Marzouk, Youssef M. [4 ]
机构
[1] CALTECH, Pasadena, CA 91106 USA
[2] Univ Washington, Seattle, WA 98195 USA
[3] NVIDIA, Santa Clara, CA 95051 USA
[4] MIT, Cambridge, MA 02139 USA
来源
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION | 2024年 / 12卷 / 03期
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
measure transport; conditional simulation; likelihood-free inference; optimal transport; GANs; nor- malizing flows; INVERSE PROBLEMS; TRANSFORMATIONS; CONVERGENCE; ALGORITHMS; REGRESSION;
D O I
10.1137/23M1581546
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a novel framework for conditional sampling of probability measures, using block triangular transport maps. We develop the theoretical foundations of block triangular transport in a Banach space setting, establishing general conditions under which conditional sampling can be achieved and drawing connections between monotone block triangular maps and optimal transport. Based on this theory, we then introduce a computational approach, called monotone generative adversarial networks (M-GANs), to learn suitable block triangular maps. Our algorithm uses only samples from the underlying joint probability measure and is hence likelihood-free. Numerical experiments with M-GAN demonstrate accurate sampling of conditional measures in synthetic examples, Bayesian inverse problems involving ordinary and partial differential equations, and probabilistic image inpainting.
引用
收藏
页码:868 / 900
页数:33
相关论文
共 50 条
  • [41] Likelihood-Free Bayesian Analysis of Memory Models
    Turner, Brandon M.
    Dennis, Simon
    Van Zandt, Trisha
    PSYCHOLOGICAL REVIEW, 2013, 120 (03) : 667 - 678
  • [42] Unbiased likelihood-free inference of the Hubble constant from light standard sirens
    Gerardi, Francesca
    Feeney, Stephen M.
    Alsing, Justin
    PHYSICAL REVIEW D, 2021, 104 (08)
  • [43] Robust Field-level Likelihood-free Inference with Galaxies
    de Santi, Natali S. M.
    Shao, Helen
    Villaescusa-Navarro, Francisco
    Abramo, L. Raul
    Teyssier, Romain
    Villanueva-Domingo, Pablo
    Ni, Yueying
    Angles-Alcazar, Daniel
    Genel, Shy
    Hernandez-Martinez, Elena
    Steinwandel, Ulrich P.
    Lovell, Christopher C.
    Dolag, Klaus
    Castro, Tiago
    Vogelsberger, Mark
    ASTROPHYSICAL JOURNAL, 2023, 952 (01):
  • [44] Nuisance hardened data compression for fast likelihood-free inference
    Alsing, Justin
    Wandelt, Benjamin
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 488 (04) : 5093 - 5103
  • [45] Modularized Bayesian analyses and cutting feedback in likelihood-free inference
    Chakraborty, Atlanta
    Nott, David J.
    Drovandi, Christopher C.
    Frazier, David T.
    Sisson, Scott A.
    STATISTICS AND COMPUTING, 2023, 33 (01)
  • [46] CoLFI: Cosmological Likelihood-free Inference with Neural Density Estimators
    Wang, Guo-Jian
    Cheng, Cheng
    Ma, Yin-Zhe
    Xia, Jun-Qing
    Abebe, Amare
    Beesham, Aroonkumar
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2023, 268 (01):
  • [47] Likelihood based inference for monotone response models
    Banerjee, Moulinath
    ANNALS OF STATISTICS, 2007, 35 (03): : 931 - 956
  • [48] Confidence Sets and Hypothesis Testing in a Likelihood-Free Inference Setting
    Dalmasso, Niccolo
    Izbicki, Rafael
    Lee, Ann B.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [49] Local dimension reduction of summary statistics for likelihood-free inference
    Siren, Jukka
    Kaski, Samuel
    STATISTICS AND COMPUTING, 2020, 30 (03) : 559 - 570
  • [50] Score Matched Neural Exponential Families for Likelihood-Free Inference
    Pacchiardi, Lorenzo
    Dutta, Ritabrata
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23 : 1 - 71