Semantic-Guided Transformer Network for Crop Classification in Hyperspectral Images

被引:0
|
作者
Pi, Weiqiang [1 ]
Zhang, Tao [2 ]
Wang, Rongyang [1 ]
Ma, Guowei [1 ]
Wang, Yong [1 ]
Du, Jianmin [2 ]
机构
[1] Huzhou Vocat & Tech Coll, Coll Intelligent Mfg & Elevator, Huzhou 313099, Peoples R China
[2] Inner Mongolia Agr Univ, Coll Mech & Elect Engn, Hohhot 010018, Peoples R China
基金
中国国家自然科学基金;
关键词
hyperspectral image classification; transformer; deep learning; attention mechanism; convolutional neural network; ATTENTION NETWORK;
D O I
10.3390/jimaging11020037
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
The hyperspectral remote sensing images of agricultural crops contain rich spectral information, which can provide important details about crop growth status, diseases, and pests. However, existing crop classification methods face several key limitations when processing hyperspectral remote sensing images, primarily in the following aspects. First, the complex background in the images. Various elements in the background may have similar spectral characteristics to the crops, and this spectral similarity makes the classification model susceptible to background interference, thus reducing classification accuracy. Second, the differences in crop scales increase the difficulty of feature extraction. In different image regions, the scale of crops can vary significantly, and traditional classification methods often struggle to effectively capture this information. Additionally, due to the limitations of spectral information, especially under multi-scale variation backgrounds, the extraction of crop information becomes even more challenging, leading to instability in the classification results. To address these issues, a semantic-guided transformer network (SGTN) is proposed, which aims to effectively overcome the limitations of these deep learning methods and improve crop classification accuracy and robustness. First, a multi-scale spatial-spectral information extraction (MSIE) module is designed that effectively handle the variations of crops at different scales in the image, thereby extracting richer and more accurate features, and reducing the impact of scale changes. Second, a semantic-guided attention (SGA) module is proposed, which enhances the model's sensitivity to crop semantic information, further reducing background interference and improving the accuracy of crop area recognition. By combining the MSIE and SGA modules, the SGTN can focus on the semantic features of crops at multiple scales, thus generating more accurate classification results. Finally, a two-stage feature extraction structure is employed to further optimize the extraction of crop semantic features and enhance classification accuracy. The results show that on the Indian Pines, Pavia University, and Salinas benchmark datasets, the overall accuracies of the proposed model are 98.24%, 98.34%, and 97.89%, respectively. Compared with other methods, the model achieves better classification accuracy and generalization performance. In the future, the SGTN is expected to be applied to more agricultural remote sensing tasks, such as crop disease detection and yield prediction, providing more reliable technical support for precision agriculture and agricultural monitoring.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] A Dual Frequency Transformer Network for Hyperspectral Image Classification
    Qiao, Xin
    Huang, Weimin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 10344 - 10358
  • [42] QTN: Quaternion Transformer Network for Hyperspectral Image Classification
    Yang, Xiaofei
    Cao, Weijia
    Lu, Yao
    Zhou, Yicong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (12) : 7370 - 7384
  • [43] Multiscale Fusion Transformer Network for Hyperspectral Image Classification
    Yuquan Gan
    Hao Zhang
    Chen Yi
    Journal of Beijing Institute of Technology, 2024, (03) : 255 - 270
  • [44] Generative Adversarial Network With Transformer for Hyperspectral Image Classification
    Hao, Siyuan
    Xia, Yufeng
    Ye, Yuanxin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [45] Dual attention transformer network for hyperspectral image classification
    Shu, Zhenqiu
    Wang, Yuyang
    Yu, Zhengtao
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [46] A complementary integrated Transformer network for hyperspectral image classification
    Liao, Diling
    Shi, Cuiping
    Wang, Liguo
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2023, 8 (04) : 1288 - 1307
  • [47] CNN and Transformer interaction network for hyperspectral image classification
    Li, Zhongwei
    Huang, Wenhao
    Wang, Leiquan
    Xin, Ziqi
    Meng, Qiao
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (18) : 5548 - 5573
  • [48] Spectral Swin Transformer Network for Hyperspectral Image Classification
    Liu, Baisen
    Liu, Yuanjia
    Zhang, Wulin
    Tian, Yiran
    Kong, Weili
    REMOTE SENSING, 2023, 15 (15)
  • [49] Multiscale Fusion Transformer Network for Hyperspectral Image Classification
    Gan, Yuquan
    Zhang, Hao
    Yi, Chen
    Journal of Beijing Institute of Technology (English Edition), 2024, 33 (03): : 255 - 270
  • [50] Object semantic-guided graph attention feature fusion network for Siamese visual tracking
    Zhang, Jianwei
    Miao, Mengen
    Zhang, Huanlong
    Wang, Jingchao
    Zhao, Yanchun
    Chen, Zhiwu
    Qiao, Jianwei
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 90