Lactic acid inhibits the interaction between PD-L1 protein and PD-L1 antibody in the PD-1/PD-L1 blockade therapy-resistant tumor

被引:0
|
作者
Oh, Wonkyung [1 ]
Kim, Alyssa Min Jung [1 ]
Dhawan, Deepika [2 ]
Knapp, Deborah W. [2 ,3 ]
Lim, Seung-Oe [1 ,3 ,4 ]
机构
[1] Purdue Univ, Dept Med Chem & Mol Pharmacol, W Lafayette, IN 47907 USA
[2] Purdue Univ, Dept Vet Clin Sci, W Lafayette, IN 47907 USA
[3] Purdue Univ, Purdue Inst Canc Res, W Lafayette, IN 47907 USA
[4] Purdue Univ, Purdue Inst Drug Discovery, W Lafayette, IN 47907 USA
关键词
IMMUNE CHECKPOINT BLOCKADE; BREAST-CANCER CELLS; AEROBIC GLYCOLYSIS; METABOLISM; MECHANISMS; EXPRESSION;
D O I
10.1016/j.ymthe.2024.12.044
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Immune checkpoint blockade therapy targeting the programmed death 1 (PD-1)/programmed death ligand 1 (PDL1) axis has shown remarkable clinical impact in multiple cancer types. Nonetheless, despite the recent success of PD-1/ PD-L1 blockade therapy, such response rates in cancer patients have been limited to tumors encompassing specific tumor microenvironment characteristics. The altered metabolic activity of cancer cells shapes the anti-tumor immune response by affecting the activity of immune cells. However, it remains mostly unknown how the altered metabolic activity of cancer cells impacts their resistance to PD-1/PD-L1 blockade therapy. Here, we found that tumor cell-derived lactic acid renders the immunosuppressive tumor microenvironment in the PD-1/ PD-L1 blockade-resistant tumors by inhibiting the interaction between the PD-L1 protein and anti-PD-L1 antibody. Furthermore, we showed that the combination therapy of targeting PD-L1 with our PD-L1 antibody-drug conjugate (PD-L1ADC) and reducing lactic acid with the monocarboxylate transporter 1 (MCT-1) inhibitor, AZD3965, can effectively treat the PD-1/PD-L1 blockade-resistant tumors. The findings of this study provide a new mechanism of how lactic acid induces an immunosuppressive tumor microenvironment and suggest a potential combination treatment to overcome the tumor resistance to PD-1/PD-L1 blockade therapy.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] PD-1 and PD-L1 antibodies for melanoma
    Tsai, Katy K.
    Zarzoso, Ines
    Daud, Adil I.
    HUMAN VACCINES & IMMUNOTHERAPEUTICS, 2014, 10 (11) : 3111 - 3116
  • [32] PD-1/PD-L1 in cardiovascular disease
    Sun, YunFeng
    Li, Liang
    Wu, YaWei
    Yang, KePing
    CLINICA CHIMICA ACTA, 2020, 505 : 26 - 30
  • [33] High PD-1/PD-L1 Checkpoint Interaction Infers Tumor Selection and Therapeutic Sensitivity to Anti-PD-1/PD-L1 Treatment
    Sanchez-Magraner, Lissete
    Miles, James
    Baker, Claire L.
    Applebee, Christopher J.
    Lee, Dae-Jin
    Elsheikh, Somaia
    Lashin, Shaimaa
    Withers, Katriona
    Watts, Andrew G.
    Parry, Richard
    Edmead, Christine
    Lopez, Jose Ignacio
    Mehta, Raj
    Italiano, Antoine
    Ward, Stephen G.
    Parker, Peter J.
    Larijani, Banafshe
    CANCER RESEARCH, 2020, 80 (19) : 4244 - 4257
  • [34] PD-L1 Testing in Guiding Patient Selection for PD-1/PD-L1 Inhibitor Therapy in Lung Cancer
    Hunter, Katerina Ancevski
    Socinski, Mark A.
    Villaruz, Liza C.
    MOLECULAR DIAGNOSIS & THERAPY, 2018, 22 (01) : 1 - 10
  • [35] Therapeutic PD-L1 antibodies are more effective than PD-1 antibodies in blocking PD-1/PD-L1 signaling
    Annika De Sousa Linhares
    Claire Battin
    Sabrina Jutz
    Judith Leitner
    Christine Hafner
    Joshua Tobias
    Ursula Wiedermann
    Michael Kundi
    Gerhard J. Zlabinger
    Katharina Grabmeier-Pfistershammer
    Peter Steinberger
    Scientific Reports, 9
  • [36] Therapeutic PD-L1 antibodies are more effective than PD-1 antibodies in blocking PD-1/PD-L1 signaling
    Linhares, Annika De Sousa
    Battin, Claire
    Jutz, Sabrina
    Leitner, Judith
    Hafner, Christine
    Tobias, Joshua
    Wiedermann, Ursula
    Kundi, Michael
    Zlabinger, Gerhard J.
    Grabmeier-Pfistershammer, Katharina
    Steinberger, Peter
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [37] PD-L1/PD-1 presence in the tumor microenvironment and activity of PD-1 blockade in multiple myeloma
    B Paiva
    A Azpilikueta
    N Puig
    E M Ocio
    R Sharma
    B O Oyajobi
    S Labiano
    L San-Segundo
    A Rodriguez
    I Aires-Mejia
    I Rodriguez
    F Escalante
    A G de Coca
    A Barez
    J F San Miguel
    I Melero
    Leukemia, 2015, 29 : 2110 - 2113
  • [38] Increase of cells expressing PD-1 and PD-L1 and enhancement of IFN- production via PD-1/PD-L1 blockade in bovine mycoplasmosis
    Goto, Shinya
    Konnai, Satoru
    Okagawa, Tomohiro
    Nishimori, Asami
    Maekawa, Naoya
    Gondaira, Satoshi
    Higuchi, Hidetoshi
    Koiwa, Masateru
    Tajima, Motoshi
    Kohara, Junko
    Ogasawara, Satoshi
    Kato, Yukinari
    Suzuki, Yasuhiko
    Murata, Shiro
    Ohashi, Kazuhiko
    IMMUNITY INFLAMMATION AND DISEASE, 2017, 5 (03) : 355 - 363
  • [39] PD-L1/PD-1 presence in the tumor microenvironment and activity of PD-1 blockade in multiple myeloma
    Paiva, B.
    Azpilikueta, A.
    Puig, N.
    Ocio, E. M.
    Sharma, R.
    Oyajobi, B. O.
    Labiano, S.
    San-Segundo, L.
    Rodriguez, A.
    Aires-Mejia, I.
    Rodriguez, I.
    Escalante, F.
    de Coca, A. G.
    Barez, A.
    San Miguel, J. F.
    Melero, I.
    LEUKEMIA, 2015, 29 (10) : 2110 - 2113
  • [40] PD-L1 Nanobody Competitively Inhibits the Formation of the PD-1/PD-L1 Complex: Comparative Molecular Dynamics Simulations
    Sun, Xin
    Yan, Xiao
    Zhuo, Wei
    Gu, Jinke
    Zuo, Ke
    Liu, Wei
    Liang, Li
    Gan, Ya
    He, Gang
    Wan, Hua
    Gou, Xiaojun
    Shi, Hubing
    Hu, Jianping
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (07)