Campanato Spaces via Quantum Markov Semigroups on Finite von Neumann Algebras

被引:0
|
作者
Hong, Guixiang [1 ]
Jing, Yuanyuan [2 ]
机构
[1] Harbin Inst Technol, Inst Adv Study Math, Harbin 150001, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
HARDY-SPACES; OPERATORS; DUALITY;
D O I
10.1093/imrn/rnae215
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Campanato spaces associated with quantum Markov semigroups on a finite von Neumann algebra M. Let T=(T-t)(t >= 0) be a Markov semigroup, P=(P-t)(t >= 0) the subordinated Poisson semigroup and alpha>0. The column Campanato space L alpha c(P) associated to P is defined to be the subset of M with finite norm which is given by & Vert;f & Vert;L-alpha (c)(P)=& Vert;f & Vert;(infinity)+sup(t>0)(1)/(t)alpha & Vert;P-t|(I-P-t)([alpha]+1)f|(2)& Vert;(1/2)(infinity). The row space L-alpha (R)(P) is defined in a canonical way. In this article, we will first show the surprising coincidence of these two spaces L-alpha (c)(P) and L-alpha (R)(P) for 0<alpha<2. This equivalence of column and row norms is generally unexpected in the noncommutative setting. The approach is to identify both of them as the Lipschitz space Lambda alpha(P). This coincidence passes to the little Campanato spaces & ell;(alpha)(c)(P) and & ell;(alpha)(R)(P) for 0<alpha<(1)/(2 )under the condition Gamma(2)>= 0. We also show that any element in L-alpha (c)(P) enjoys the higher-order cancellation property, that is, the index [alpha]+1 in the definition of the Campanato norm can be replaced by any integer greater than alpha. It is a surprise that this property holds without further condition on the semigroup. Lastly, following Mei's work on BMO, we also introduce the spaces L-alpha (c)(T) and explore their connection with L-alpha (c)(P). All the above-mentioned results seem new even in the (semi-)commutative case.
引用
收藏
页码:13611 / 13641
页数:31
相关论文
共 50 条
  • [31] Stochastic integration in finite von Neumann algebras
    Luczak, Andrzej
    Mohammed, Abdulrahman A. A.
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2007, 44 (02) : 233 - 264
  • [32] Bounded cocycles on finite Von Neumann algebras
    Bates, T
    Giordano, T
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2001, 12 (06) : 743 - 750
  • [33] Maximality of entropy in finite von Neumann algebras
    Haagerup, U
    Stormer, E
    INVENTIONES MATHEMATICAE, 1998, 132 (02) : 433 - 455
  • [34] FINITE SUMS OF PROJECTIONS IN VON NEUMANN ALGEBRAS
    Halpern, Herbert
    Kaftal, Victor
    Ng, Ping Wong
    Zhang, Shuang
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (05) : 2409 - 2445
  • [35] INTEGER OPERATORS IN FINITE VON NEUMANN ALGEBRAS
    Thom, Andreas
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2011, 3 (04) : 433 - 450
  • [36] Mixing subalgebras of finite von Neumann algebras
    Cameron, Jan
    Fang, Junsheng
    Mukherjee, Kunal
    NEW YORK JOURNAL OF MATHEMATICS, 2013, 19 : 343 - 366
  • [37] Cartan subalgebras of finite von Neumann algebras
    Sinclair, AM
    Smith, RR
    MATHEMATICA SCANDINAVICA, 1999, 85 (01) : 105 - 120
  • [38] Torsion theories for finite von Neumann algebras
    Vas, L
    COMMUNICATIONS IN ALGEBRA, 2005, 33 (03) : 663 - 688
  • [39] FINITE WEIGHT PROJECTIONS IN VON NEUMANN ALGEBRAS
    HALPERN, H
    KAFTAL, V
    ZSIDO, L
    PACIFIC JOURNAL OF MATHEMATICS, 1991, 147 (01) : 81 - 121
  • [40] Maximality of entropy in finite von Neumann algebras
    Uffe Haagerup
    Erling Størmer
    Inventiones mathematicae, 1998, 132 : 433 - 455