Learning tensor networks with tensor cross interpolation: New algorithms and libraries

被引:0
|
作者
Fernandez, Yuriel Nunez [1 ,2 ]
Ritter, Marc K. [3 ,4 ]
Jeannin, Matthieu [2 ]
Li, Jheng-Wei [2 ]
Kloss, Thomas [1 ]
Louvet, Thibaud [2 ]
Terasaki, Satoshi [6 ]
Parcollet, Olivier [5 ,7 ]
von Delft, Jan [3 ,4 ]
Shinaoka, Hiroshi [8 ]
Waintal, Xavier [2 ]
机构
[1] Univ Grenoble Alpes, CNRS, Neel Inst, F-38000 Grenoble, France
[2] Univ Grenoble Alpes, CEA, Grenoble INP, IRIG,Pheliqs, F-38000 Grenoble, France
[3] Ludwig Maximilians Univ Munchen, Arnold Sommerfeld Ctr Theoret Phys, Ctr Nanosci, D-80333 Munich, Germany
[4] Ludwig Maximilians Univ Munchen, Munich Ctr Quantum Sci & Technol, D-80333 Munich, Germany
[5] Flatiron Inst, Ctr Computat Quantum Phys, 162 5th Ave, New York, NY 10010 USA
[6] AtelierArith, Sendai, Miyagi 9800004, Japan
[7] Univ Paris Saclay, CNRS, CEA, Inst Phys theor, F-91191 Gif Sur Yvette, France
[8] Saitama Univ, Dept Phys, Saitama 3388570, Japan
来源
SCIPOST PHYSICS | 2025年 / 18卷 / 03期
关键词
SCHUR COMPLEMENT; APPROXIMATION; MATRIX; QUASIOPTIMALITY;
D O I
10.21468/SciPostPhys.18.3.104
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The tensor cross interpolation (TCI) algorithm is a rank-revealing algorithm for decomposing low-rank, high-dimensional tensors into tensor trains/matrix product states (MPS). TCI learns a compact MPS representation of the entire object from a tiny training data set. Once obtained, the large existing MPS toolbox provides exponentially fast algorithms for performing a large set of operations. We discuss several improvements and variants of TCI. In particular, we show that replacing the cross interpolation by the partially rank-revealing LU decomposition yields a more stable and more flexible algorithm than the original algorithm. We also present two open source libraries, xfac in Python/C++ and TensorCrossInterpolation.jl in Julia, that implement these improved algorithms, and illustrate them on several applications. These include sign- problem-free integration in large dimension, the "superhigh-resolution" quantics representation of functions, the solution of partial differential equations, the superfast Fourier transform, the computation of partition functions, and the construction of matrix product operators.
引用
收藏
页数:74
相关论文
共 50 条
  • [21] Variational tensor neural networks for deep learning
    Jahromi, Saeed S.
    Orus, Roman
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [22] Towards quantum machine learning with tensor networks
    Huggins, William
    Patil, Piyush
    Mitchell, Bradley
    Whaley, K. Birgitta
    Stoudenmire, E. Miles
    QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (02)
  • [23] Implementation and comparison of algebraic and machine learning based tensor interpolation methods applied to fiber orientation tensor fields
    Blarr, J.
    Sabiston, T.
    Krauss, C.
    Bauer, J. K.
    Liebig, W. V.
    Inal, K.
    Weidenmann, K. A.
    COMPUTATIONAL MATERIALS SCIENCE, 2023, 228
  • [24] Strong coupling impurity solver based on quantics tensor cross interpolation
    Kim, Aaram J.
    PHYSICAL REVIEW B, 2025, 111 (12)
  • [25] Linear Invariant Tensor Interpolation Applied to Cardiac Diffusion Tensor MRI
    Gahm, Jin Kyu
    Wisniewski, Nicholas
    Kindlmann, Gordon
    Kung, Geoffrey L.
    Klug, William S.
    Garfinkel, Alan
    Ennis, Daniel B.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2012, PT II, 2012, 7511 : 494 - 501
  • [26] TENSOR DECOMPOSITION VIA CORE TENSOR NETWORKS
    Zhang, Jianfu
    Tao, Zerui
    Zhang, Liqing
    Zhao, Qibin
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 2130 - 2134
  • [27] Cross-Relational Reasoning for Neural Tensor Networks
    Falck, Tristan
    Coulter, Duncan
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, PT III, AIAI 2024, 2024, 713 : 44 - 57
  • [28] Principal Tensor Embedding for Unsupervised Tensor Learning
    Turchetti, Claudio
    Falaschetti, Laura
    Manoni, Lorenzo
    IEEE ACCESS, 2020, 8 (08): : 225240 - 225257
  • [29] TENSOR PRODUCT METHODS IN MULTIDIMENSIONAL INTERPOLATION
    HAUSSMANN, W
    MATHEMATISCHE ZEITSCHRIFT, 1972, 124 (03) : 191 - +
  • [30] TENSOR-BASED ALGORITHMS FOR LEARNING MULTIDIMENSIONAL SEPARABLE DICTIONARIES
    Roemer, Florian
    Del Galdo, Giovanni
    Haardt, Martin
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,