Learning tensor networks with tensor cross interpolation: New algorithms and libraries

被引:0
|
作者
Fernandez, Yuriel Nunez [1 ,2 ]
Ritter, Marc K. [3 ,4 ]
Jeannin, Matthieu [2 ]
Li, Jheng-Wei [2 ]
Kloss, Thomas [1 ]
Louvet, Thibaud [2 ]
Terasaki, Satoshi [6 ]
Parcollet, Olivier [5 ,7 ]
von Delft, Jan [3 ,4 ]
Shinaoka, Hiroshi [8 ]
Waintal, Xavier [2 ]
机构
[1] Univ Grenoble Alpes, CNRS, Neel Inst, F-38000 Grenoble, France
[2] Univ Grenoble Alpes, CEA, Grenoble INP, IRIG,Pheliqs, F-38000 Grenoble, France
[3] Ludwig Maximilians Univ Munchen, Arnold Sommerfeld Ctr Theoret Phys, Ctr Nanosci, D-80333 Munich, Germany
[4] Ludwig Maximilians Univ Munchen, Munich Ctr Quantum Sci & Technol, D-80333 Munich, Germany
[5] Flatiron Inst, Ctr Computat Quantum Phys, 162 5th Ave, New York, NY 10010 USA
[6] AtelierArith, Sendai, Miyagi 9800004, Japan
[7] Univ Paris Saclay, CNRS, CEA, Inst Phys theor, F-91191 Gif Sur Yvette, France
[8] Saitama Univ, Dept Phys, Saitama 3388570, Japan
来源
SCIPOST PHYSICS | 2025年 / 18卷 / 03期
关键词
SCHUR COMPLEMENT; APPROXIMATION; MATRIX; QUASIOPTIMALITY;
D O I
10.21468/SciPostPhys.18.3.104
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The tensor cross interpolation (TCI) algorithm is a rank-revealing algorithm for decomposing low-rank, high-dimensional tensors into tensor trains/matrix product states (MPS). TCI learns a compact MPS representation of the entire object from a tiny training data set. Once obtained, the large existing MPS toolbox provides exponentially fast algorithms for performing a large set of operations. We discuss several improvements and variants of TCI. In particular, we show that replacing the cross interpolation by the partially rank-revealing LU decomposition yields a more stable and more flexible algorithm than the original algorithm. We also present two open source libraries, xfac in Python/C++ and TensorCrossInterpolation.jl in Julia, that implement these improved algorithms, and illustrate them on several applications. These include sign- problem-free integration in large dimension, the "superhigh-resolution" quantics representation of functions, the solution of partial differential equations, the superfast Fourier transform, the computation of partition functions, and the construction of matrix product operators.
引用
收藏
页数:74
相关论文
共 50 条
  • [1] Supervised Learning with Tensor Networks
    Stoudenmire, E. M.
    Schwab, David J.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [2] KERNEL LEARNING WITH TENSOR NETWORKS
    Konstantinidis, Kriton
    Li, Shengxi
    Mandic, Danilo P.
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 2920 - 2924
  • [3] Theories, algorithms and applications in tensor learning
    Deng, Xiaowu
    Shi, Yuanquan
    Yao, Dunhong
    APPLIED INTELLIGENCE, 2023, 53 (17) : 20514 - 20534
  • [4] Theories, algorithms and applications in tensor learning
    Xiaowu Deng
    Yuanquan Shi
    Dunhong Yao
    Applied Intelligence, 2023, 53 : 20514 - 20534
  • [5] Tensor Networks for Latent Variable Analysis: Novel Algorithms for Tensor Train Approximation
    Phan, Anh-Huy
    Cichocki, Andrzej
    Uschmajew, Andre
    Tichavsky, Petr
    Luta, George
    Mandic, Danilo P.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (11) : 4622 - 4636
  • [6] Quantum annealing algorithms for Boolean tensor networks
    Pelofske, Elijah
    Hahn, Georg
    O'Malley, Daniel
    Djidjev, Hristo N.
    Alexandrov, Boian S.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [7] Quantum annealing algorithms for Boolean tensor networks
    Elijah Pelofske
    Georg Hahn
    Daniel O’Malley
    Hristo N. Djidjev
    Boian S. Alexandrov
    Scientific Reports, 12
  • [8] Tensor networks for unsupervised machine learning
    Liu, Jing
    Li, Sujie
    Zhang, Jiang
    Zhang, Pan
    PHYSICAL REVIEW E, 2023, 107 (01)
  • [9] Positive unlabeled learning with tensor networks
    Zunkovic, Bojan
    NEUROCOMPUTING, 2023, 552
  • [10] Tensor networks for quantum machine learning
    Rieser, Hans-Martin
    Koester, Frank
    Raulf, Arne Peter
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 479 (2275):