Screening for referrable dry eye disease using deep learning: a multicenter Asian study

被引:0
|
作者
Tong, Louis [1 ,2 ]
Sim, Ralene [3 ]
Ng, YiPin [4 ]
Xu Xinxing [4 ]
Chen, Wei [5 ]
Feng, Yun [6 ]
Fluengo Gimeno, Federico [7 ]
Yong, Liu [4 ]
Goh, Rick [4 ]
Ting, Daniel [2 ,8 ]
机构
[1] Singapore Natl Eye Ctr, Corneal & External Eye Dis Serv, Singapore, Singapore
[2] Duke NUS Med Sch, Ophthalm & Visual Sci Acad Clin Program, Singapore, Singapore
[3] Singapore Natl Eye Ctr, Training & Educ, Singapore, Singapore
[4] Inst High Performance Comp, Singapore, Singapore
[5] Wenzhou Med Univ, Wenzhou, Zhejiang, Peoples R China
[6] Peking Univ Third Hosp, Beijing, Beijing, Peoples R China
[7] Univ Austral, Buenos Aires, DF, Argentina
[8] Singapore Natl Eye Ctr, Vitreoretinal Div, Singapore, Singapore
关键词
D O I
暂无
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
2923
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Eye Disease Detection Using Deep Learning Models with Transfer Learning Techniques
    Vardhan, Kalla Bharath
    Nidhish, Mandava
    Kiran, C. Surya
    Shameem, D. Nahid
    Charan, V. Sai
    Bhavadharini, R. M.
    EAI ENDORSED TRANSACTIONS ON SCALABLE INFORMATION SYSTEMS, 2025, 12 (01):
  • [22] Impact of Incomplete Blinking Analyzed Using a Deep Learning Model With the Keratograph 5M in Dry Eye Disease
    Zheng, Qinxiang
    Wang, Lei
    Wen, Han
    Ren, Yueping
    Huang, Shenghai
    Bai, Furong
    Li, Na
    Craig, Jennifer P.
    Tong, Louis
    Chen, Wei
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2022, 11 (03):
  • [23] Tear Film Break-Up Time Measurement Using Deep Convolutional Neural Networks for Screening Dry Eye Disease
    Su, Tai-Yuan
    Liu, Zi-Yuan
    Chen, Duan-Yu
    IEEE SENSORS JOURNAL, 2018, 18 (16) : 6857 - 6862
  • [24] Superficial Punctate Keratitis Grading for Dry Eye Screening Using Deep Convolutional Neural Networks
    Su, Tai-Yuan
    Ting, Peng-Jen
    Chang, Shu-Wen
    Chen, Duan-Yu
    IEEE SENSORS JOURNAL, 2020, 20 (03) : 1672 - 1678
  • [25] Diagnostic Performance of McMonnies Questionnaire as a Screening Survey for Dry Eye: A Multicenter Analysis
    Guo, Yuxin
    Peng, Rongmei
    Feng, Kang
    Hong, Jing
    JOURNAL OF OPHTHALMOLOGY, 2016, 2016
  • [26] Deep learning-based fully automated dry eye disease severity grading system
    Yoon, Chang Ho
    Kim, Seonghwan
    Park, Daseul
    Shin, Youmin
    Kim, Mee Kum
    Jeon, Hyun Sun
    Kim, Young-Gon
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [27] Deep learning-based fully automated grading system for dry eye disease severity
    Kim, Seonghwan
    Park, Daseul
    Shin, Youmin
    Kim, Mee Kum
    Jeon, Hyun Sun
    Kim, Young-Gon
    Yoon, Chang Ho
    PLOS ONE, 2024, 19 (03):
  • [28] The evaluation of dry eye mobile apps for screening of dry eye disease and educational tear event in Japan
    Uchino, Miki
    Kawashima, Motoko
    Uchino, Yuichi
    Suzuki, Natume
    Mitamura, Hiroto
    Mizuno, Miki
    Hori, Yuichi
    Yokoi, Norihiko
    Tsubota, Kazuo
    OCULAR SURFACE, 2018, 16 (04): : 430 - 435
  • [29] Proteomic analysis of tears in dry eye disease: A prospective, double-blind multicenter study
    Jung, Gun Tae
    Kim, Minha
    Song, Jong Suk
    Kim, Tae Im
    Chung, Tae Young
    Choi, Chul Young
    Kim, Hyun Seong
    An, Woo Ju
    Jeong, Su Jin
    Lee, Hye Sun
    Jeon, Soyoung
    Kim, Kwang Pyo
    Lee, Hyung Keun
    OCULAR SURFACE, 2023, 29 : 68 - 76
  • [30] Development and validation of a deep learning pipeline to diagnose ovarian masses using ultrasound screening: a retrospective multicenter study
    Dai, Wen-Li
    Wu, Ying-Nan
    Ling, Ya-Ting
    Zhao, Jing
    Zhang, Shuang
    Gu, Zhao-Wen
    Gong, Li-Ping
    Zhu, Man-Ning
    Dong, Shuang
    Xu, Song-Cheng
    Wu, Lei
    Sun, Li-Tao
    Kong, De-Xing
    ECLINICALMEDICINE, 2024, 78