Regulating Interphase Chemistry by Targeted Functionalization of Hard Carbon Anode in Ester-Based Electrolytes for High-Performance Sodium-Ion Batteries

被引:0
|
作者
Zhang, Guangxiang [1 ]
Fu, Chuankai [1 ]
Gao, Shuyang [1 ]
Zhao, Haoquan [1 ]
Ma, Chi [1 ]
Liu, Ziwei [1 ]
Li, Shuai [1 ]
Ju, Zhijin [2 ]
Huo, Hua [1 ]
Zuo, Pengjian [1 ]
Yin, Geping [1 ]
Liu, Tiefeng [3 ,4 ]
Ma, Yulin [1 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, State Key Lab Space Power Sources, Harbin 150001, Peoples R China
[2] Wenzhou Univ, Coll Chem & Mat Engn, Wenzhou 325035, Peoples R China
[3] Zhejiang Univ, Coll Chem & Biol Engn, Hangzhou 310027, Peoples R China
[4] Quzhou Inst Power Batteries & Energy Storage, Quzhou 324000, Peoples R China
基金
中国国家自然科学基金;
关键词
self-assembled molecular layer; hard carbon anode; ester-based electrolytes; surface functional groups; sodium-ion batteries;
D O I
10.1002/anie.202424028
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Commercial hard carbon (HC) anode suffers from unexpected interphase chemistry rooted in the parasitic reactions between surface oxygen-functional groups and ester-based electrolytes. Herein, an innovative strategy is proposed to regulate interphase chemistry by tailoring targeted functional groups on the HC surface, where highly active undesirable oxygen-functional groups are skillfully converted into a Si-O-Si molecular layer favorable for anchoring anions. Then, an inorganic/organic hybrid solid electrolyte interphase with low interfacial charge transfer resistance and enhanced cycling durability is constructed successfully. Consequently, the modified HC anode delivers an excellent rate capability of 206.2 mAh g-1 at 0.5 A g-1 and a remarkable capacity retention of 92.5 % after 1000 cycles at 1.0 A g-1. Moreover, the coin-type full-cell equipped with Na2Fe[Fe(CN)6] cathode exhibits an exceptional capacity retention ratio of 80.9 % after 800 cycles at 1C. The present simple and effective interfacial modification strategy offers a promising and alternative avenue for promoting the development and practicability of HC anode in ester-based electrolytes for sodium-ion batteries.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Electrochemical and thermal properties of hard carbon anodes in ether-based and ester-based electrolytes for sodium ion batteries
    Ping, Ping
    Luo, Xinyue
    Gao, Wei
    Li, Zheng
    Kong, Depeng
    JOURNAL OF ENERGY STORAGE, 2025, 107
  • [22] Hydrothermally assisted transformation of corn stalk wastes into high-performance hard carbon anode for sodium-ion batteries
    Cong, Lin
    Tian, Guorong
    Luo, Dongxue
    Ren, Xuefei
    Xiang, Xingde
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2020, 871
  • [23] Curly hard carbon derived from pistachio shells as high-performance anode materials for sodium-ion batteries
    Shou-Dong Xu
    Yang Zhao
    Shibin Liu
    Xiaoxia Ren
    Liang Chen
    Wenjing Shi
    Xiaomin Wang
    Ding Zhang
    Journal of Materials Science, 2018, 53 : 12334 - 12351
  • [24] Hard carbon derived from waste tea biomass as high-performance anode material for sodium-ion batteries
    Linyuan Pei
    Hailiang Cao
    Liangtao Yang
    Peizhi Liu
    Min Zhao
    Bingshe Xu
    Junjie Guo
    Ionics, 2020, 26 : 5535 - 5542
  • [25] Cellulose as a novel precursor to construct high-performance hard carbon anode toward enhanced sodium-ion batteries
    Qin, Linna
    Xu, Shoudong
    Lu, Zhonghua
    Wang, Li
    Chen, Liang
    Zhang, Ding
    Tian, Jinlv
    Wei, Tao
    Chen, Jiaqi
    Guo, Chunli
    DIAMOND AND RELATED MATERIALS, 2023, 136
  • [26] Hard carbon derived from waste tea biomass as high-performance anode material for sodium-ion batteries
    Pei, Linyuan
    Cao, Hailiang
    Yang, Liangtao
    Liu, Peizhi
    Zhao, Min
    Xu, Bingshe
    Guo, Junjie
    IONICS, 2020, 26 (11) : 5535 - 5542
  • [27] Hard Carbon Microsphere with Built-In Electron Transport Channels as a High-Performance Anode for Sodium-Ion Batteries
    Zhang, Di
    Wang, Yizhou
    Fang, Zhimin
    He, Yu-Shi
    Zhang, Weimin
    Ma, Zi-Feng
    Kang, Shuwen
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (05)
  • [28] Curly hard carbon derived from pistachio shells as high-performance anode materials for sodium-ion batteries
    Xu, Shou-Dong
    Zhao, Yang
    Liu, Shibin
    Ren, Xiaoxia
    Chen, Liang
    Shi, Wenjing
    Wang, Xiaomin
    Zhang, Ding
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (17) : 12334 - 12351
  • [29] Hard Carbon Microtubes Made from Renewable Cotton as High-Performance Anode Material for Sodium-Ion Batteries
    Li, Yunming
    Hu, Yong-Sheng
    Titirici, Maria-Magdalena
    Chen, Liquan
    Huang, Xuejie
    ADVANCED ENERGY MATERIALS, 2016, 6 (18)
  • [30] High-performance Sn-based anode with robust lignin-derived hard carbon support for sodium-ion batteries
    Wang, Jie
    Yin, Huanhuan
    Wang, Ziqi
    Gao, Jiafeng
    Jiang, Qiwen
    Xu, Yutong
    Chen, Zui
    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2022, 17 (04)