Intelligent System to Detect Malicious URLs Using Machine-Learning Algorithms

被引:0
|
作者
Jeyavadhanam, B. Rebecca [1 ]
Bhuvanan, Mahesh [1 ]
Sihan, Haroon [1 ]
Ahmadzadeh, Sahar [1 ]
Karthick, Gayathri [1 ]
机构
[1] York St John Univ, Dept Comp Sci, London, England
关键词
Malicious; Machine learning; URL; Decision tree; Logistic;
D O I
10.1007/978-981-97-3556-3_28
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Digital technology has made significant advancements in recent years, particularly on the Internet. Since most of our activities are now conducted online, this development is of particular significance. The continuous evolution of cyber threats has led to a heightened risk of cyberattacks, driven by the inventive tactics employed by malicious actors. Among these threats, one of the most perilous is the malicious URL, meticulously crafted to illicitly obtain information from unsuspecting novice end users. Such attacks compromise user systems and incur annual financial losses in the billions of dollars. Consequently, there is a growing imperative to fortify website defenses. The principal objective of this study is to develop a machine-learning model capable of discerning between malicious and legitimate URLs based on carefully selected parameters for each category. This research employs a variety of machine learning techniques, including decision tree (DT), logistic regression (LR), multi-layer perceptron (MLP), and naive Bayes (NB), while exploring different hyperparameter configurations to classify URLs as safe or malicious. Upon analyzing the experimental results, it is evident that the 'tanh' activation function of MLP in conjunction with the 'adam' solver achieves the highest accuracy rate of 80.01%. This underscores the effectiveness of our approach in enhancing cybersecurity measures against malicious URLs.
引用
收藏
页码:349 / 358
页数:10
相关论文
共 50 条
  • [21] AgroConsultant: Intelligent Crop Recommendation System Using Machine Learning Algorithms
    Doshi, Zeel
    Nadkarni, Subhash
    Agrawal, Rashi
    Shah, Neepa
    2018 FOURTH INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION (ICCUBEA), 2018,
  • [22] A machine learning based approach to detect malicious android apps using discriminant system calls
    Vinod, P.
    Zemmari, Akka
    Conti, Mauro
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 94 : 333 - 350
  • [23] Machine Learning Algorithm to Detect Malicious Codes
    Khan, Simon
    Majumder, Uttam
    CYBER SENSING 2017, 2017, 10185
  • [24] Credit Risk Analysis Using Machine-Learning Algorithms
    Alagoz, Gokhan
    Canakoglu, Ethem
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [25] Towards Developing a Tool to Detect Phishing URLs: A Machine Learning Approach
    Basnet, Ram B.
    Doleck, Tenzin
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMMUNICATION TECHNOLOGY CICT 2015, 2015, : 220 - 223
  • [26] Intelligent ID System for the Industrial Internet of Things Using Machine Learning Algorithms
    Sawssen, Bacha
    Noureeddine, Liouane
    2024 IEEE INTERNATIONAL CONFERENCE ON ADVANCED SYSTEMS AND EMERGENT TECHNOLOGIES, ICASET 2024, 2024,
  • [27] A Novel Intelligent Antenna Synthesis System Using Hybrid Machine Learning Algorithms
    Xue, Mengtao
    Shi, Dan
    He, Yeyang
    Li, Chaoying
    2019 INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY (EMC EUROPE 2019), 2019, : 902 - 907
  • [28] Prediction of brain maturity in infants using machine-learning algorithms
    Smyser, Christopher D.
    Dosenbach, Nico U. F.
    Smyser, Tara A.
    Snyder, Abraham Z.
    Rogers, Cynthia E.
    Inder, Terrie E.
    Schlaggar, Bradley L.
    Neil, Jeffrey J.
    NEUROIMAGE, 2016, 136 : 1 - 9
  • [29] Identification of human drug targets using machine-learning algorithms
    Kumari, Priyanka
    Nath, Abhigyan
    Chaube, Radha
    COMPUTERS IN BIOLOGY AND MEDICINE, 2015, 56 : 175 - 181
  • [30] Features of Detecting Malicious Installation Files Using Machine Learning Algorithms
    Yugai, P. E.
    Zhukovskii, E. V.
    Semenov, P. O.
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2023, 57 (08) : 968 - 974