3D-Printed Continuous Basalt Fiber-Reinforced Polylactic Acid Composites: Effect of Printing Parameters on Impact and Interlaminar Shear Strength

被引:0
|
作者
Malik, Mayand [1 ]
Saxena, Prateek [1 ]
机构
[1] Indian Inst Technol Mandi, Sch Mech & Mat Engn, Mandi 175005, Himachal Prades, India
关键词
additive manufacturing; continuous basalt fiber; composite; impact energy absorption; interlaminar shear strength; MECHANICAL-PROPERTIES; CONTINUOUS CARBON; PLA; TENSILE; TEMPERATURE; PERFORMANCE;
D O I
10.1007/s11665-025-10767-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Material extrusion-based additive manufacturing has gained significant attention due to its ability to fabricate complex shapes with reduced material waste compared to conventional methods. This technology is still in its early research phase, which includes optimizing the process parameters for 3D printing composites using continuous and short fiber-reinforced thermoplastics. Basalt fiber has emerged as a promising eco-friendly material that can replace glass and Kevlar (R) fibers due to its lower cost and environmentally friendly properties. The mechanical properties of the composites largely depend on the process parameters involved in the material extrusion technique. This study aims to experimentally analyze the effect of print resolution, nozzle speed, and hot-end temperature on material extrusion-based 3D-printed eco-friendly continuous basalt fiber (CBF)-reinforced polylactic acid (PLA) composites and to optimize the printing parameters for achieving enhanced mechanical properties. Impact tests and short-beam shear tests were conducted on specimens printed with different printing parameters to evaluate their effect on impact energy absorption and interlaminar shear strength (ILSS). The results showed that print resolution is the most efficient factor to improve impact strength and interlaminar shear strength of the composites, followed by nozzle speed and hot-end temperature. The optimum results were obtained at a print resolution of 0.25 mm, nozzle speed of 30 mm/s, and hot-end temperature of 210 degrees C. The fractured surfaces of the failed specimens after testing were analyzed using scanning electron microscopy (SEM) to confirm the micro-failure modes of the specimens.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] 3D printing with tension and compaction: prevention of fiber waviness in 3D-printed continuous carbon fiber-reinforced thermoplastics
    Ichihara, Naruki
    Ueda, Masahito
    Kajiwara, Kentaro
    Le Duigou, Antoine
    Castro, Mickael
    ADVANCED COMPOSITE MATERIALS, 2024, 33 (03) : 377 - 387
  • [22] 3D printing of continuous fiber-reinforced thermoset composites
    He, Xu
    Ding, Yuchen
    Lei, Zepeng
    Welch, Sam
    Zhang, Wei
    Dunn, Martin
    Yu, Kai
    Additive Manufacturing, 2021, 40
  • [23] 3D printing of continuous fiber-reinforced thermoset composites
    He, Xu
    Ding, Yuchen
    Lei, Zepeng
    Welch, Sam
    Zhang, Wei
    Dunn, Martin
    Yu, Kai
    ADDITIVE MANUFACTURING, 2021, 40
  • [24] Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing
    Li, Nanya
    Li, Yingguang
    Liu, Shuting
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2016, 238 : 218 - 225
  • [25] 3D-printing continuous plant fiber/polylactic acid composites with lightweight and high strength
    Xing, Dan
    Wang, Haigang
    Tao, Yubo
    Zhang, Jingfa
    Li, Peng
    Koubaa, Ahmed
    POLYMER COMPOSITES, 2024,
  • [26] The role of printing parameters on the short beam strength of 3D-printed continuous carbon fibre reinforced epoxy-PETG composites
    Almeida Jr, Jose Humberto S.
    Jayaprakash, Siddharth
    Kolari, Kari
    Kuva, Jukka
    Kukko, Kirsi
    Partanen, Jouni
    COMPOSITE STRUCTURES, 2024, 337
  • [27] Fracture studies of 3D-printed continuous glass fiber reinforced composites
    Frohn-Soerensen, Peter
    Reuter, Jonas
    Engel, Bernd
    Reinicke, Tamara
    Khosravani, Mohammad Reza
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2022, 119
  • [28] Comparative study of the effect of fiber surface treatments on the flexural and interlaminar shear strength of carbon fiber-reinforced composites
    Sharma, Sahendra P.
    Lakkad, Subhash C.
    MATERIALS TODAY COMMUNICATIONS, 2020, 24 (24)
  • [29] Frequency and deflection responses of 3D-printed carbon fiber reinforced polylactic acid composites: Theoretical and experimental verification
    Kannan, Sridharan
    Manapaya, Apichat
    Selvaraj, Rajeshkumar
    POLYMER COMPOSITES, 2023, 44 (07) : 4095 - 4108
  • [30] Enhancing the mechanical performance of 3D-printed basalt fiber-reinforced composites using in-line atmospheric plasma pretreatments
    Dowling, Denis P.
    Abourayana, Hisham M.
    Brantseva, Tatiana
    Antonov, Andrey
    Dobbyn, Peter J.
    PLASMA PROCESSES AND POLYMERS, 2020, 17 (01)