Efficient Parallel Processing of Semantic Trajectory Similarity Joins

被引:0
|
作者
Shang, Shuo [1 ]
Huang, Chengrui [1 ]
Chen, Lisi [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
来源
IEEE INTERNET OF THINGS JOURNAL | 2025年 / 12卷 / 04期
基金
中国国家自然科学基金;
关键词
Geo-textual; similarity join; trajectory; SEARCH; AWARE;
D O I
10.1109/JIOT.2024.3427676
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Matching similar pairs of trajectories, called tra-jectory similarity join, is a fundamental functionality forthe Internet of Everything (IoE). We obverse that keyword-augmented trajectories are becoming increasingly popular. Inthis light, we investigate semantic trajectory similarity (STS)join that consists of two subproblems, threshold-based STSJoin and top-kSTS(k-STS) Join. Each semantic trajectory isa sequence of geo-textual objects with both location and textinformation. Specifically, given two sets of semantic trajectoriesand a threshold theta or result numberk, the STS Join returnsall pairs of semantic trajectories from the two sets with spatio-textual similarity no less than theta,andthek-STS Join returnskmost similar pairs of semantic trajectories from the two sets.To enable efficient STS andk-STS Joins processing on largesets of semantic trajectories, we present a two-phase parallelsearch algorithm. We first group semantic trajectories basedon their text information. The algorithm's per-group searchesare independent of each other and thus can be performedin parallel. We generate spatial and textual summaries foreach trajectory batch and develop batch filtering techniques toprune unqualified trajectory pairs in a batch mode. Next, wepropose a divide-and-conquer algorithm to derive bounds ofspatial similarity and textual similarity between two semantictrajectories, which enable us filter out dissimilar trajectory pairsefficiently. Further, hierarchical batch filtering join algorithmis developed to processk-STS Join. Experimental study withlarge semantic trajectory data confirms that our algorithm ofprocessing semantic trajectory join is capable of substantiallyoutperforming well-designed baselines.
引用
收藏
页码:3534 / 3548
页数:15
相关论文
共 50 条
  • [21] Strategic and suave processing for performing similarity joins using MapReduce
    Lakshminarayanan, Mahalakshmi
    Acosta, William F.
    Green, Robert C., II
    Devabhaktuni, Vijay
    JOURNAL OF SUPERCOMPUTING, 2014, 69 (02): : 930 - 954
  • [22] Strategic and suave processing for performing similarity joins using MapReduce
    Mahalakshmi Lakshminarayanan
    William F. Acosta
    Robert C. Green
    Vijay Devabhaktuni
    The Journal of Supercomputing, 2014, 69 : 930 - 954
  • [23] PBiTree coding and efficient processing of containment joins
    Wang, W
    Jiang, HF
    Lu, HJ
    Yu, JX
    19TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, PROCEEDINGS, 2003, : 391 - 402
  • [24] Efficient processing of outer joins and aggregate functions
    Bhargava, G
    Goel, P
    Iyer, B
    PROCEEDINGS OF THE TWELFTH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, 1996, : 441 - 449
  • [25] Parallel Processing of Temporal Anti-Joins in Memory
    Reppas, Ioannis
    Mirabi, Meghdad
    Fathi, Leila
    Binnig, Carsten
    Dignos, Anton
    Gamper, Johann
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, PT I, DASFAA 2024, 2024, 14850 : 86 - 102
  • [26] Efficient Set Similarity Joins Using Min-prefixes
    Ribeiro, Leonardo A.
    Haerder, Theo
    ADVANCES IN DATABASES AND INFORMATION SYSTEMS, PROCEEDINGS, 2009, 5739 : 88 - 102
  • [27] SYNCSIGNATURE: A Simple, Efficient, Parallelizable Framework for Tree Similarity Joins
    Karpov, Nikolai
    Zhang, Qin
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 16 (02): : 330 - 342
  • [28] An Efficient Partition Based Method for Exact Set Similarity Joins
    Deng, Dong
    Li, Guoliang
    Wen, He
    Feng, Jianhua
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2015, 9 (04): : 360 - 371
  • [29] Parallel processing of spatial joins using R-trees
    Brinkhoff, T
    Kriegel, HP
    Seeger, B
    PROCEEDINGS OF THE TWELFTH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, 1996, : 258 - 265
  • [30] Semantic similarity, predictability, and models of sentence processing
    Roland, Douglas
    Yun, Hongoak
    Koenig, Jean-Pierre
    Mauner, Gail
    COGNITION, 2012, 122 (03) : 267 - 279