Efficient Parallel Processing of Semantic Trajectory Similarity Joins

被引:0
|
作者
Shang, Shuo [1 ]
Huang, Chengrui [1 ]
Chen, Lisi [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
来源
IEEE INTERNET OF THINGS JOURNAL | 2025年 / 12卷 / 04期
基金
中国国家自然科学基金;
关键词
Geo-textual; similarity join; trajectory; SEARCH; AWARE;
D O I
10.1109/JIOT.2024.3427676
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Matching similar pairs of trajectories, called tra-jectory similarity join, is a fundamental functionality forthe Internet of Everything (IoE). We obverse that keyword-augmented trajectories are becoming increasingly popular. Inthis light, we investigate semantic trajectory similarity (STS)join that consists of two subproblems, threshold-based STSJoin and top-kSTS(k-STS) Join. Each semantic trajectory isa sequence of geo-textual objects with both location and textinformation. Specifically, given two sets of semantic trajectoriesand a threshold theta or result numberk, the STS Join returnsall pairs of semantic trajectories from the two sets with spatio-textual similarity no less than theta,andthek-STS Join returnskmost similar pairs of semantic trajectories from the two sets.To enable efficient STS andk-STS Joins processing on largesets of semantic trajectories, we present a two-phase parallelsearch algorithm. We first group semantic trajectories basedon their text information. The algorithm's per-group searchesare independent of each other and thus can be performedin parallel. We generate spatial and textual summaries foreach trajectory batch and develop batch filtering techniques toprune unqualified trajectory pairs in a batch mode. Next, wepropose a divide-and-conquer algorithm to derive bounds ofspatial similarity and textual similarity between two semantictrajectories, which enable us filter out dissimilar trajectory pairsefficiently. Further, hierarchical batch filtering join algorithmis developed to processk-STS Join. Experimental study withlarge semantic trajectory data confirms that our algorithm ofprocessing semantic trajectory join is capable of substantiallyoutperforming well-designed baselines.
引用
收藏
页码:3534 / 3548
页数:15
相关论文
共 50 条
  • [1] Parallel trajectory similarity joins in spatial networks
    Shang, Shuo
    Chen, Lisi
    Wei, Zhewei
    Jensen, Christian S.
    Zheng, Kai
    Kalnis, Panos
    VLDB JOURNAL, 2018, 27 (03): : 395 - 420
  • [2] Parallel trajectory similarity joins in spatial networks
    Shuo Shang
    Lisi Chen
    Zhewei Wei
    Christian S. Jensen
    Kai Zheng
    Panos Kalnis
    The VLDB Journal, 2018, 27 : 395 - 420
  • [3] Parallel Semantic Trajectory Similarity Join
    Chen, Lisi
    Shang, Shuo
    Jensen, Christian S.
    Yao, Bin
    Kalnis, Panos
    2020 IEEE 36TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2020), 2020, : 997 - 1008
  • [4] Efficient Semantic Trajectory Similarity Search
    Chen, Jian
    Gao, Hong
    Luo, Yubo
    Yang, Donghua
    Li, Jianzhong
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (02): : 2219 - 2232
  • [5] Efficient Metric Indexing for Similarity Search and Similarity Joins
    Chen, Lu
    Gao, Yunjun
    Li, Xinhan
    Jensen, Christian S.
    Chen, Gang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2017, 29 (03) : 556 - 571
  • [6] Efficient processing of spatiotemporal joins
    Zimbrao, G
    De Souza, JM
    De Almeida, VT
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, 2004, 2973 : 190 - 195
  • [7] FAST PARALLEL ALGORITHMS FOR PROCESSING OF JOINS
    SHASHA, D
    SPIRAKIS, P
    LECTURE NOTES IN COMPUTER SCIENCE, 1988, 297 : 939 - 953
  • [8] Efficient Filtering Techniques for Cosine Similarity Joins
    Lee, Dongjoo
    Park, Jaehui
    Shim, Junho
    Lee, Sang-goo
    INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2011, 14 (04): : 1265 - 1289
  • [9] Efficient and Scalable Graph Similarity Joins in MapReduce
    Chen, Yifan
    Zhao, Xiang
    Xiao, Chuan
    Zhang, Weiming
    Tang, Jiuyang
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [10] VChunkJoin: An Efficient Algorithm for Edit Similarity Joins
    Wang, Wei
    Qin, Jianbin
    Xiao, Chuan
    Lin, Xuemin
    Shen, Heng Tao
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2013, 25 (08) : 1916 - 1929