Photoplastic effect in II-VI semiconductors: The role of hole redistribution in dislocation glide

被引:0
|
作者
Shen, Yidi [1 ]
Li, Mingqiang [2 ]
Luo, Kun [1 ]
Zou, Yu [2 ]
An, Qi [1 ]
机构
[1] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA
[2] Univ Toronto, Dept Mat Sci & Engn, Toronto, ON M5S 3E4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
constrained DFT; dislocation; nanoindentation; photoplasticity; semiconductor; GENERALIZED GRADIENT APPROXIMATION; TOTAL-ENERGY CALCULATIONS; ELASTIC BAND METHOD; ZNS; PLASTICITY; DEFORMATION; BEHAVIOR; DEFECTS; POINTS;
D O I
10.1111/jace.20249
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Photoplasticity in semiconductors, characterized by the modification of plastic deformation under light, has long been recognized but its underlying mechanisms remain elusive. Here, we integrated quantum mechanics (QM) simulations with nanoindentation experiments to investigate the impact of light-induced electron-hole pairs on the plastic deformation in two typical II-IV semiconductors: ZnS and CdTe. For ZnS, the QM simulations indicate an increase in the energy for breaking the Zn-S bond within the S-core dislocation in its glide process, due to the redistribution of excited holes. This enhancement in bond energy elevates the energy barrier for dislocation glide, eventually saturating at high electron-hole concentrations and leading to reduced dislocation mobility in ZnS under light. These findings align well with the nanoindentation experiments, which demonstrate an increase followed by a plateau in the hardness of ZnS under light. In contrast, CdTe exhibits a reduced energy barrier for the glide of Te-core dislocation due to the lack of hole redistribution, likely causing an enhanced dislocation mobility.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Excitons in motion in II-VI semiconductors
    Davies, J. J.
    Smith, L. C.
    Wolverson, D.
    Kochereshko, V. P.
    Cibert, J.
    Mariette, H.
    Boukari, H.
    Wiater, M.
    Karczewski, G.
    Wojtowicz, T.
    Gust, A.
    Kruse, C.
    Hommel, D.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2010, 247 (06): : 1521 - 1527
  • [22] BOUND BIEXCITONS IN II-VI SEMICONDUCTORS
    RAZBIRIN, BS
    NELSON, DK
    ERLAND, J
    PANTKE, KH
    LYSSENKO, VG
    HVAN, JM
    SOLID STATE COMMUNICATIONS, 1995, 93 (01) : 65 - 70
  • [23] Intrinsic defects in II-VI semiconductors
    Watkins, GD
    JOURNAL OF CRYSTAL GROWTH, 1996, 159 (1-4) : 338 - 344
  • [24] Electron mobility in II-VI semiconductors
    Rode, D. L.
    PHYSICAL REVIEW B-SOLID STATE, 1970, 2 (10): : 4036 - 4044
  • [25] ISOELECTRONIC OXYGEN IN II-VI SEMICONDUCTORS
    AKIMOTO, K
    OKUYAMA, H
    IKEDA, M
    MORI, Y
    APPLIED PHYSICS LETTERS, 1992, 60 (01) : 91 - 93
  • [26] PHONON CONDUCTIVITY OF II-VI SEMICONDUCTORS
    SOOD, KC
    SINGH, MP
    VERMA, GS
    PHYSICAL REVIEW B, 1971, 3 (02): : 385 - &
  • [27] EFFECTIVE CHARGES IN II-VI SEMICONDUCTORS
    SOHN, SH
    HYUN, DG
    NOMA, M
    HOSOMI, S
    HAMAKAWA, Y
    JOURNAL OF CRYSTAL GROWTH, 1992, 117 (1-4) : 907 - 912
  • [28] HOMOEPITAXY AND HETEROEPITAXY OF II-VI SEMICONDUCTORS
    FEUILLET, G
    DICIOCCIO, L
    HEWAT, E
    BOURRET, A
    CIBERT, J
    MAGNEA, N
    MARIETTE, H
    TATARENKO, S
    JOURNAL DE MICROSCOPIE ET DE SPECTROSCOPIE ELECTRONIQUES, 1988, 13 (03): : A46 - A46
  • [29] Applications of II-VI semimagnetic semiconductors
    Mycielski, A.
    Kowalczyk, L.
    Galazka, R.R.
    Sobolewski, Roman
    Wang, D.
    Burger, A.
    Sowińska, M.
    Groza, M.
    Siffert, P.
    Szadkowski, A.
    Witkowska, B.
    Kaliszek, W.
    Journal of Alloys and Compounds, 2006, 423 (1-2 SPEC. ISS.): : 163 - 168
  • [30] INTERACTION OF II-VI SEMICONDUCTORS WITH METALS
    TOMASHIK, VN
    GRYTSIV, VI
    INORGANIC MATERIALS, 1994, 30 (11) : 1282 - 1284