Global Existence and Stability for a Viscoelastic Wave Equation with Nonlinear Boundary Source Term

被引:0
|
作者
Mohamed, Mellah [1 ]
Ali, Hakem [1 ]
Gongwei, Liu [2 ]
机构
[1] Univ Djillali Liabes Sidi Bel Abbes, Lab ACEDP, Sidi Bel Abbes 22000, Algeria
[2] Henan Univ Technol, Coll Sci, Zhengzhou 450001, Peoples R China
来源
关键词
Viscoelastic equation; nonlinear boundary source; stabilization; GENERAL DECAY; BLOW-UP; NONEXISTENCE; ENERGY;
D O I
10.4208/jpde.v37.n4.6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work considers the initial boundary value problem for a viscoelastic wave equation with a nonlinear boundary source term. Under suitable assumptions, we prove the existence of global weak solutions using the Galerkin approximation. Then, we give a decay rate estimate of the energy by making use of the perturbed energy method.
引用
收藏
页码:467 / 481
页数:15
相关论文
共 50 条
  • [21] EXISTENCE AND STABILITY RESULTS OF NONLINEAR HIGHER-ORDER WAVE EQUATION WITH A NONLINEAR SOURCE TERM AND A DELAY TERM
    Abdelli, Mama
    Beniani, Abderrahmane
    Mezouar, Nadia
    Chahtou, Ahmed
    MATHEMATICA BOHEMICA, 2023, 148 (01): : 11 - 34
  • [22] Global existence and general decay for a weak viscoelastic equation with acoustic boundary conditions and a logarithmic source term
    Tahamtani, Faramarz
    Shahrouzi, Mohammad
    Ferreira, Jorge
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (05):
  • [23] Global existence and general decay for a weak viscoelastic equation with acoustic boundary conditions and a logarithmic source term
    Faramarz Tahamtani
    Mohammad Shahrouzi
    Jorge Ferreira
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [24] Global existence and blow-up of solutions for nonlinear viscoelastic wave equation with degenerate damping and source
    Han, Xiaosen
    Wang, Mingxin
    MATHEMATISCHE NACHRICHTEN, 2011, 284 (5-6) : 703 - 716
  • [25] Global existence and stability of the wave equation with boundary variable damping
    Imane, Boulmerka
    Ilhem, Hamchi
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (08) : 3064 - 3079
  • [26] Asymptotic Stability of Global Solutions to Nonlinear Wave Equation with Strong Dissipative Term and Source Term
    Ye, Yaojun
    ICMS2009: PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION, VOL 5, 2009, : 130 - 133
  • [27] Existence of global attractors for wave equation of Kirchhoff type with Nonlinear damping and memory term at boundary
    Zhu, Chaosheng
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2007, 4 (03) : 247 - 262
  • [28] Global existence and exponential growth for a viscoelastic wave equation with dynamic boundary conditions
    Gerbi, Stephane
    Said-Houari, Belkacem
    ADVANCES IN NONLINEAR ANALYSIS, 2013, 2 (02) : 163 - 193
  • [29] GLOBAL EXISTENCE, GENERAL DECAY AND BLOW-UP FOR A NONLINEAR WAVE EQUATION WITH LOGARITHMIC SOURCE TERM AND FRACTIONAL BOUNDARY DISSIPATION
    Doudi, Nadjat
    Boulaaras, Salah
    Mezouar, Nadia
    Jan, Rashid
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (06): : 1323 - 1345
  • [30] Wave equation with viscoelastic acoustic boundary conditions and supercritical source term
    Vicente, A.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 363 : 422 - 464