Mass production of robust hydrogel electrolytes for high-performance zinc-ion batteries

被引:0
|
作者
Ma, Linlin [1 ,2 ]
Liu, Xiaojing [1 ,2 ]
Fan, Jihao [2 ]
Yu, Xiaodong [2 ]
Cao, Longsheng [2 ]
Zhao, Chuangqi [1 ,2 ]
机构
[1] Univ Sci & Technol China, Sch Chem & Mat Sci, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Suzhou Inst Adv Res, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1039/d4mh01716a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hydrogel electrolytes are crucial for solving the problems of random zinc dendrite growth, hydrogen evolution reactions, and uncontrollable passivation. However, their complex fabrication processes pose challenges to achieving large-scale production with excellent mechanical properties required to withstand multiple cycles of mechanical loads while maintaining high electrochemical performance needed for the new-generation flexible zinc-ion batteries. Herein, we present a superspreading-based strategy to produce robust hydrogel electrolytes consisting of polyvinyl alcohol, sodium alginate and sodium acetate. The hydrogel electrolytes have a tensile strength of 54.1 +/- 2.5 MPa, a fracture strain of up to 1113 +/- 37%, and a fracture toughness of 374.1 +/- 6.1 MJ m-3, showcasing endurance of 2500 cycles at 80% strain without damage. Besides, the hydrogel electrolytes feature a high ionic conductivity of 14 mS cm-1 and a Zn2+ transference number of 0.62, as interfacial regulation enables the symmetric cell to achieve 1300 hours of highly stable and reversible zinc plating/stripping. As a preliminary attempt toward mass production, soft-pack batteries assembled using modified hydrogel electrolytes demonstrate robust machinability, with minimal voltage change after being bent and deformed 100 times. This work is expected to pave the way for developing a convenient hydrogel electrolyte for effective and stable zinc-ion batteries.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Engineering integrated structure for high-performance flexible zinc-ion batteries
    Liu, Yang
    Zhou, Xiaoming
    Bai, Yang
    Liu, Rong
    Li, Xiaolong
    Xiao, Huanhao
    Wang, Yuanming
    Wang, Xue
    Ma, Yu
    Yuan, Guohui
    CHEMICAL ENGINEERING JOURNAL, 2021, 417
  • [22] Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries
    Liu, Chaofeng
    Neale, Zachary
    Zheng, Jiqi
    Jia, Xiaoxiao
    Huang, Juanjuan
    Yan, Mengyu
    Tian, Meng
    Wang, Mingshan
    Yang, Jihui
    Cao, Guozhong
    ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (07) : 2273 - 2285
  • [23] Agar-based hydrogel polymer electrolyte for high-performance zinc-ion batteries at all climatic temperatures
    Zheng, Zhuoyuan
    Shi, Wenhui
    Zhou, Xianlong
    Zhang, Xingpeng
    Guo, Weilong
    Shi, Xiangyu
    Xiong, Ye
    Zhu, Yusong
    ISCIENCE, 2023, 26 (04)
  • [24] Heterostructured Interface Enables Uniform Zinc Deposition for High-Performance Zinc-Ion Batteries
    Jiang, Zhenjing
    Yin, Kuibo
    Pan, Rui
    Zhang, Guoju
    Cui, Fuhan
    Luo, Kailin
    Xiong, Yuwei
    Sun, Litao
    SMALL, 2023, 19 (39)
  • [25] Zinc Vanadium Oxide Nanobelts as High-Performance Cathodes for Rechargeable Zinc-Ion Batteries
    Venkatesan, R.
    Bauri, Ranjit
    Mayuranathan, Kishore Kumar
    ENERGY & FUELS, 2022, 36 (14) : 7854 - 7864
  • [26] Improvements and Challenges of Hydrogel Polymer Electrolytes for Advanced Zinc Anodes in Aqueous Zinc-Ion Batteries
    Peng, Huili
    Wang, Dongdong
    Zhang, Fenglong
    Yang, Lishan
    Jiang, Xiaolei
    Zhang, Kaiyuan
    Qian, Zhao
    Yang, Jian
    ACS NANO, 2024, 18 (33) : 21779 - 21803
  • [27] High-performance zinc-ion hydrogel electrolytes based on molecular-level hybridization of PVA with polymer quantum dots
    Du, Jingyu
    Zhan, Xiao
    Xu, Yuhuan
    Diao, Kunlan
    Zhang, Daohai
    Qin, Shuhao
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 212 : 251 - 258
  • [28] Solid Polymer Electrolytes for Zinc-Ion Batteries
    Cordeiro, Ivan Miguel De Cachinho
    Li, Ao
    Lin, Bo
    Ma, Daphne Xiuyun
    Xu, Lulu
    Eh, Alice Lee-Sie
    Wang, Wei
    BATTERIES-BASEL, 2023, 9 (07):
  • [29] Layered barium vanadate nanobelts for high-performance aqueous zinc-ion batteries
    Xing-hua Qin
    Ye-hong Du
    Peng-chao Zhang
    Xin-yu Wang
    Qiong-qiong Lu
    Ai-kai Yang
    Jun-cai Sun
    International Journal of Minerals, Metallurgy and Materials, 2021, 28 : 1684 - 1692
  • [30] Fabrication of a Robust and Porous MnO2 Electrode as the Cathode for High-Performance Aqueous Zinc-Ion Batteries
    Nie, Nantian
    Wang, Fuliang
    Yao, Wenhao
    ENERGY TECHNOLOGY, 2023, 11 (12)