Masakhane-Afrisenti at SemEval-2023 Task 12: Sentiment Analysis using Afro-centric Language Models and Adapters for Low-resource African Languages

被引:0
|
作者
Azime, Israel Abebe [2 ]
Al-Azzawi, Sana Sabah [3 ]
Lambebo Tonja, Atnafu [4 ]
Shode, Iyanuoluwa [5 ]
Alabi, Jesujoba [2 ]
Awokoya, Ayodele [6 ]
Oduwole, Mardiyyah [1 ]
Adewumi, Tosin [3 ]
Fanijo, Samuel [7 ]
Oyinkansola, Awosan [1 ]
Yousuf, Oreen [1 ]
机构
[1] Masakhane NLP, Seoul, South Korea
[2] Saarland Univ, Saarbrucken, Germany
[3] Lulea Univ Technol, Lulea, Sweden
[4] Inst Politecn Nacl, Mexico City, DF, Mexico
[5] Montclair State Univ, Montclair, NJ USA
[6] Univ Ibadan, Ibadan, Nigeria
[7] Iowa State Univ, Ames, IA USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we describe our submission for the AfriSenti-SemEval Shared Task 12 of SemEval-2023. The task aims to perform monolingual sentiment classification (sub-task A) for 12 African languages, multilingual sentiment classification (sub-task B), and zero-shot sentiment classification (task C). For sub-task A, we conducted experiments using classical machine learning classifiers, Afro-centric language models, and language-specific models. For task B, we fine-tuned multilingual pre-trained language models that support many of the languages in the task. For task C, we made use of a parameter-efficient Adapter approach that leverages monolingual texts in the target language for effective zero-shot transfer. Our findings suggest that using pre-trained Afrocentric language models improves performance for low-resource African languages. We also ran experiments using adapters for zero-shot tasks, and the results suggest that we can obtain promising results by using adapters with limited resources.
引用
收藏
页码:1311 / 1316
页数:6
相关论文
共 27 条
  • [21] DN at SemEval-2023 Task 12: Low-Resource Language Text Classification via Multilingual Pretrained Language Model Fine-tuning
    Daniil, Homskiy
    Narek, Maloyan
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 1537 - 1541
  • [22] JCT at SemEval-2023 Tasks 12A and 12B: Sentiment Analysis for Tweets Written in Low-resource African Languages using Various Machine Learning and Deep Learning Methods, Resampling, and HyperParameter Tuning
    Keinan, Ron
    HaCohen-Kerner, Yaakov
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 365 - 378
  • [23] ABCD Team at SemEval-2023 Task 12: An Ensemble Transformer-based System for African Sentiment Analysis
    Dang Van Thin
    Dai Ba Nguyen
    Dang Ba Qui
    Duong Ngoc Hao
    Ngan Luu-Thuy Nguyen
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 324 - 330
  • [24] Enhancing Sentiment Analysis in Amharic: Leveraging Transformer-Based Language Model for Low-Resource African Languages
    Raychawdhary, Nilanjana
    Das, Amit
    Bhattacharya, Sutanu
    Dozier, Gerry
    Seals, Cheryl D.
    SOUTHEASTCON 2024, 2024, : 50 - 55
  • [25] UMUTeam and SINAI at SemEval-2023 Task 9: Multilingual Tweet Intimacy Analysis using Multilingual Large Language Models and Data Augmentation
    Garcia-Diaz, Jose Antonio
    Pan, Ronghao
    Jimenez Zafra, Salud Maria
    Martin-Valdivia, Maria-Teresa
    Urena-Lopez, L. Alfonso
    Valencia-Garcia, Rafael
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 293 - 299
  • [26] NLP_Team1@SSN at SemEval-2024 Task 1: Impact of language models in Sentence-BERT for Semantic Textual Relatedness in Low-resource Languages
    Kumar, Senthil B.
    Chandrabose, Aravindan
    Gokulakrishnan, B.
    Karthikraja, T. P.
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 1854 - 1859
  • [27] Text Mining at SemEval-2024 Task 1: Evaluating Semantic Textual Relatedness in Low-resource Languages using Various Embedding Methods and Machine Learning Regression Models
    Keinan, Ron
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 420 - 431