Experiment-based superposition thermal modeling of laser powder bed fusion

被引:0
|
作者
Lough, Cody S. [1 ,2 ]
Liu, Tao [1 ]
Landers, Robert G. [3 ]
Bristow, Douglas A. [1 ]
Drallmeier, James A. [1 ]
Brown, Ben [2 ]
Kinzel, Edward C. [2 ]
机构
[1] Missouri Univ Sci & Technol, Dept Mech & Aerosp Engn, Rolla, MO 65409 USA
[2] Kansas City Natl Secur Campus, Kansas City, MO 64147 USA
[3] Univ Notre Dame, Dept Aerosp & Mech Engn, Notre Dame, IN 46556 USA
关键词
Laser powder bed fusion; SWIR imaging; Superposition; Green's function; DEFECTS;
D O I
10.1016/j.addma.2025.104708
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Parts experience significant local thermal variations during the Laser Powder Bed Fusion (LPBF) metal Additive Manufacturing (AM) process, providing a potential source of defects. Near real-time thermal predictions can enable better process planning and facilitate corrections on subsequent layers to enable the engineering of laser parameter and scan path combinations that avoid defect inducing scenarios. This paper considers an experimentbased Discrete Green's Function (DGF) thermal model for temperature field prediction in LPBF. An analytical framework is developed and used to calculate an experimental DGF (i.e., powder bed's single pulse temperature response) from spatiotemporal Short-Wave Infrared (SWIR) camera data. The extracted DGF is superimposed along a laser scan path to predict the future temperature history. Experimental results show the superposition model accurately predicts a rectangular layer's temperature history (uncorrected for emissivity) with an 8 % average percent error. The model's prediction of the temperature history and thermal features are shown to be consistent for various laser powers, laser exposure times, laser raster vector lengths, and scan path rotation angles. The superposition predictions slightly deviate from the experimental results where the laser corners inlayer, when high exposure times are used, and if there is scanning with short raster vectors. These deviations are attributed to evaporative cooling causing the experimental temperatures to saturate. There is the potential to reduce this error in future work by developing a higher dimensional DGF where the DGF functions explicitly account for those boundary conditions. Overall, the experiment-based DGF model demonstrates a strong potential for applications in feedforward correction of thermally driven LPBF process errors and baselining measurements from in-situ part qualification frameworks.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Experiment-Based Modeling of Turbulent Flames with Inhomogeneous Inlets
    Ranade, Rishikesh
    Echekki, Tarek
    Masri, Assaad R.
    FLOW TURBULENCE AND COMBUSTION, 2022, 108 (04) : 1043 - 1067
  • [42] Local Remelting in Laser Powder Bed Fusion
    Lehmann, Janno
    Weise, Martin
    Koehler, Markus
    von Lacroix, Frank
    Ploshikhin, Vasily
    Dilger, Klaus
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2024, 8 (06):
  • [43] Scalable Thermal Simulation of Powder Bed Fusion
    Zhang, Yaqi
    Shapiro, Vadim
    Witherell, Paul
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2022, 144 (05):
  • [44] Machine-Learning-Based Monitoring of Laser Powder Bed Fusion
    Yuan, Bodi
    Guss, Gabriel M.
    Wilson, Aaron C.
    Hau-Riege, Stefan P.
    DePond, Phillip J.
    McMains, Sara
    Matthews, Manyalibo J.
    Giera, Brian
    ADVANCED MATERIALS TECHNOLOGIES, 2018, 3 (12):
  • [45] Tungsten Fabricated by Laser Powder Bed Fusion
    Rebesan, Pietro
    Bonesso, Massimiliano
    Gennari, Claudio
    Dima, Razvan
    Pepato, Adriano
    Vedani, Maurizio
    BHM Berg- und Huttenmannische Monatshefte, 2021, 166 (05): : 263 - 269
  • [46] Modulated laser thermal interrogation (MLTI): A novel in situ metal powder evaluation technique for laser powder bed fusion
    Ghadi, Sina
    Chen, Xiaobo
    Tomasello, Nicholas S.
    Derimow, Nicholas A.
    Rangarajan, Srikanth
    Zhou, Guangwen
    Schiffres, Scott N.
    ADDITIVE MANUFACTURING, 2025, 102
  • [47] Fundamentals of Laser Powder Bed Fusion of Metals
    Arjunan, Arun
    ADVANCES IN INDUSTRIAL AND MANUFACTURING ENGINEERING, 2022, 4
  • [48] Parameter development for laser powder bed fusion
    Uhlmann E.
    Mühlenweg A.
    WT Werkstattstechnik, 2021, 111 (7-8): : 507 - 512
  • [49] Benchmarking of Laser Powder Bed Fusion Machines
    Moshiri, Mandana
    Candeo, Stefano
    Carmignato, Simone
    Mohanty, Sankhya
    Tosello, Guido
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2019, 3 (04):
  • [50] Eutectic Superalloys for Laser Powder Bed Fusion
    Christofidou, K. A.
    Wilson, A. S.
    Markanday, J. F. S.
    Pickering, E. J.
    Church, N. L.
    Miller, J. R.
    Jones, N. G.
    Jones, C. N.
    Stone, H. J.
    SUPERALLOYS 2024, ISS 2024, 2024, : 860 - 870