Uniqueness of least energy solutions to the fractional Lane-Emden equation in the ball

被引:0
|
作者
Dela Torre, Azahara [2 ]
Parini, Enea [1 ]
机构
[1] Aix Marseille Univ, CNRS, I2M, 3 Pl Victor Hugo, F-13331 Marseille 03, France
[2] Sapienza Univ Roma, Fac Sci Matemat Fis & Nat, Dipartimento Matemat Guido Castelnuovo, Piazzale Aldo Moro 5, I-00185 Rome, RM, Italy
关键词
NONLINEAR EQUATIONS; REGULARITY; SYMMETRY;
D O I
10.1007/s00208-024-03019-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove uniqueness of least energy solutions to the fractional Lane-Emden equation, under homogeneous Dirichlet exterior conditions, when the underlying domain is a ball B subset of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B \subset \mathbb {R}<^>N$$\end{document}. The equation is characterized by a superlinear, subcritical power-like nonlinearity. The proof makes use of Morse theory and is inspired by some results obtained by C. S. Lin in the '90s. A new Hopf's Lemma-type result shown in this paper is an essential element in the proof of nondegeneracy of least energy solutions.
引用
收藏
页码:3987 / 4010
页数:24
相关论文
共 50 条
  • [1] On the least-energy solutions of the pure Neumann Lane-Emden equation
    Saldana, Alberto
    Tavares, Hugo
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 29 (03):
  • [2] ON THE FRACTIONAL LANE-EMDEN EQUATION
    Davila, Juan
    Dupaigne, Louis
    Wei, Juncheng
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (09) : 6087 - 6104
  • [3] NONPERTURBATIVE SOLUTIONS OF THE LANE-EMDEN EQUATION
    BURT, PB
    PHYSICS LETTERS A, 1985, 109 (04) : 133 - 135
  • [4] NEW SOLUTIONS OF LANE-EMDEN EQUATION
    SEIDOV, ZF
    KUZAKHMEDOV, RK
    ASTRONOMICHESKII ZHURNAL, 1978, 55 (06): : 1250 - 1255
  • [5] Fractional Singular Differential Systems of Lane-Emden Type: Existence and Uniqueness of Solutions
    Gouari, Yazid
    Dahmani, Zoubir
    Farooq, Shan E.
    Ahmad, Farooq
    AXIOMS, 2020, 9 (03)
  • [6] Analytic and numerical solutions to the Lane-Emden equation
    Van Gorder, Robert A.
    Vajravelu, K.
    PHYSICS LETTERS A, 2008, 372 (39) : 6060 - 6065
  • [7] Exact solutions of the generalized Lane-Emden equation
    Goenner, H
    Havas, P
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (10) : 7029 - 7042
  • [8] Approximate nonradial solutions for the Lane-Emden problem in the ball
    Fazekas, Borbala
    Pacella, Filomena
    Plum, Michael
    ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 268 - 284
  • [9] EXISTENCE OF NONLINEAR LANE-EMDEN EQUATION OF FRACTIONAL ORDER
    Ibrahim, Rabha W.
    MISKOLC MATHEMATICAL NOTES, 2012, 13 (01) : 39 - 52
  • [10] Polynomial Least Squares Method for Fractional Lane-Emden Equations
    Caruntu, Bogdan
    Bota, Constantin
    Lapadat, Marioara
    Pasca, Madalina Sofia
    SYMMETRY-BASEL, 2019, 11 (04):