Dependence of eigenvalues of fourth-order Sturm-Liouville problems on canonical boundary conditions

被引:0
|
作者
Suo, Jianqing [1 ]
机构
[1] Inner Mongolia Univ, Math Dept, Hohhot 010021, Peoples R China
关键词
Fourth-order Sturm-Liouville; problems; Canonical boundary conditions; Dependence; Eigenvalues; DIFFERENTIAL-OPERATORS; FORMS;
D O I
10.1016/j.jmaa.2024.128890
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss the dependence of eigenvalues of fourth-order SturmLiouville (SL) problems on the fundamental canonical forms of separated, coupled and mixed self-adjoint boundary conditions. The eigenvalues depend not only continuously but smoothly on the boundary conditions and boundary points. Simultaneously, the derivative expression of the eigenvalues with respect to all the parameters in the boundary conditions are given, and thus its monotonicity with respect to some parameters is derived.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Dependence of eigenvalues of a class of fourth-order Sturm-Liouville problems on the boundary
    Ge, Suqin
    Wang, Wanyi
    Suo, Jianqing
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 220 : 268 - 276
  • [2] Eigenvalues of fourth-order singular Sturm-Liouville boundary value problems
    Zhang, Xinguang
    Liu, Lishan
    Zou, Huichao
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (02) : 384 - 392
  • [3] Eigenvalues of regular fourth-order Sturm-Liouville problems with transmission conditions
    Li, Kun
    Sun, Jiong
    Hao, Xiaoling
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (10) : 3538 - 3551
  • [4] DEPENDENCE OF EIGENVALUES ON THE REGULAR FOURTH-ORDER STURM-LIOUVILLE PROBLEM
    Suo, Jianqing
    Shi, Zhijie
    Wei, Zhen
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (05): : 2788 - 2807
  • [5] Eigenvalues of a class of regular fourth-order Sturm-Liouville problems
    Suo, Jianqing
    Wang, Wanyi
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (19) : 9716 - 9729
  • [6] An efficient technique for finding the eigenvalues of fourth-order Sturm-Liouville problems
    Syam, Muhammed I.
    Siyyam, Hani I.
    CHAOS SOLITONS & FRACTALS, 2009, 39 (02) : 659 - 665
  • [7] Dependence of eigenvalues of Sturm-Liouville problems on the boundary
    Kong, Q
    Zettl, A
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 126 (02) : 389 - 407
  • [8] Discrete fourth-order Sturm-Liouville problems
    Ben-Artzi, Matania
    Croisille, Jean-Pierre
    Fishelov, Dalia
    Katzir, Ron
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (03) : 1485 - 1522
  • [9] Fliess series approach to the computation of the eigenvalues of fourth-order Sturm-Liouville problems
    Chanane, B
    APPLIED MATHEMATICS LETTERS, 2002, 15 (04) : 459 - 463
  • [10] An efficient technique for finding the eigenvalues and the eigenelements of fourth-order Sturm-Liouville problems
    El-Gamel M.
    El-Azab M.S.
    Fathy M.
    SeMA Journal, 2017, 74 (1) : 37 - 56