Global and Nonglobal Solutions for Pseudo-Parabolic Equation with Inhomogeneous Terms

被引:0
|
作者
Yang, Chunxiao [1 ]
Fan, Jieyu [1 ]
Gao, Miao [1 ]
机构
[1] Xian Univ Architecture & Technol, Sch Sci, Xian 710055, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Pseudo-parabolic equation; critical Fujita exponent; global solutions; blow-up; CAUCHY-PROBLEM; SOBOLEV-TYPE;
D O I
10.4208/jpde.v37.n3.5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers the Cauchy problem of pseudo-parabolic equation with inhomogeneous terms u(t)= triangle u+k triangle u(t)+w(x)u(p)(x,t). In [1], Li et al. gave the critical Fujita exponent, second critical exponent and the life span for blow-up solutions under w(x) = |x |(sigma)with sigma >0. We further generalize the weight function w(x) similar to| x| (sigma )for -2< sigma <0, and discuss the global and non-global solutions to obtain the critical Fujita exponent.
引用
收藏
页码:295 / 308
页数:14
相关论文
共 50 条
  • [21] Global existence and blow-up of weak solutions for a pseudo-parabolic equation with high initial energy
    Zhu, Xiangyu
    Guo, Bin
    Liao, Menglan
    APPLIED MATHEMATICS LETTERS, 2020, 104 (104)
  • [22] Lifespan of solutions for a class of pseudo-parabolic equation with weak-memory
    Zennir, Khaled
    Miyasita, Tosiya
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (02) : 957 - 964
  • [23] The local well-posedness of solutions for a nonlinear pseudo-parabolic equation
    Shaoyong Lai
    Haibo Yan
    Yang Wang
    Boundary Value Problems, 2014
  • [24] The local well-posedness of solutions for a nonlinear pseudo-parabolic equation
    Lai, Shaoyong
    Yan, Haibo
    Wang, Yang
    BOUNDARY VALUE PROBLEMS, 2014, : 1 - 8
  • [25] Blow-up and global existence of solutions for time-space fractional pseudo-parabolic equation
    Li, Yaning
    Yang, Yuting
    AIMS MATHEMATICS, 2023, 8 (08): : 17827 - 17859
  • [26] A Pseudo-parabolic Type Equation with Nonlinear Sources
    LI YING-HUA~1
    CommunicationsinMathematicalResearch, 2011, 27 (01) : 37 - 46
  • [27] Analysis of a pseudo-parabolic equation by potential wells
    Jun Zhou
    Guangyu Xu
    Chunlai Mu
    Annali di Matematica Pura ed Applicata (1923 -), 2021, 200 : 2741 - 2766
  • [28] SMALL PERTURBATION OF A SEMILINEAR PSEUDO-PARABOLIC EQUATION
    Cao, Yang
    Yin, Jingxue
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (02) : 631 - 642
  • [30] Global solutions and blow up solutions to a class of pseudo-parabolic equations with nonlocal term
    Zhu, Xiaoli
    Li, Fuyi
    Li, Yuhua
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 329 : 38 - 51