Global and Nonglobal Solutions for Pseudo-Parabolic Equation with Inhomogeneous Terms

被引:0
|
作者
Yang, Chunxiao [1 ]
Fan, Jieyu [1 ]
Gao, Miao [1 ]
机构
[1] Xian Univ Architecture & Technol, Sch Sci, Xian 710055, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Pseudo-parabolic equation; critical Fujita exponent; global solutions; blow-up; CAUCHY-PROBLEM; SOBOLEV-TYPE;
D O I
10.4208/jpde.v37.n3.5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers the Cauchy problem of pseudo-parabolic equation with inhomogeneous terms u(t)= triangle u+k triangle u(t)+w(x)u(p)(x,t). In [1], Li et al. gave the critical Fujita exponent, second critical exponent and the life span for blow-up solutions under w(x) = |x |(sigma)with sigma >0. We further generalize the weight function w(x) similar to| x| (sigma )for -2< sigma <0, and discuss the global and non-global solutions to obtain the critical Fujita exponent.
引用
收藏
页码:295 / 308
页数:14
相关论文
共 50 条
  • [1] Nonexistence of global solutions for an inhomogeneous pseudo-parabolic equation
    Borikhanov, Meiirkhan B.
    Torebek, Berikbol T.
    APPLIED MATHEMATICS LETTERS, 2022, 134
  • [2] Cauchy problems of pseudo-parabolic equations with inhomogeneous terms
    Li, Zhongping
    Du, Wanjuan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (06): : 3181 - 3203
  • [3] Cauchy problems of pseudo-parabolic equations with inhomogeneous terms
    Zhongping Li
    Wanjuan Du
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 3181 - 3203
  • [4] Global solutions of a fractional semilinear pseudo-parabolic equation with nonlocal source
    Li, Na
    Fang, Shaomei
    APPLICABLE ANALYSIS, 2022, : 2486 - 2499
  • [5] A pseudo-parabolic equation with logarithmic nonlinearity: Global existence and blowup of solutions
    Jayachandran, Sushmitha
    Soundararajan, Gnanavel
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (15) : 11993 - 12011
  • [6] On a semilinear pseudo-parabolic equation with nonlinear convolution terms
    Liu, Huijie
    Kim, Eun-Seok
    Fang, Zhong Bo
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2025, 84
  • [7] INITIAL BOUNDARY VALUE PROBLEM FOR A INHOMOGENEOUS PSEUDO-PARABOLIC EQUATION
    Zhou, Jun
    ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (01): : 67 - 90
  • [8] Global existence and nonexistence of solutions for the nonlinear pseudo-parabolic equation with a memory term
    Di, Huafei
    Shang, Yadong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (17) : 3923 - 3936
  • [9] The global existence and time-decay for the solutions of the fractional pseudo-parabolic equation
    Jin, Lingyu
    Li, Lang
    Fang, Shaomei
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (10) : 2221 - 2232
  • [10] Critical exponent of non-global solutions for an inhomogeneous pseudo-parabolic equation with space-time forcing term
    Zhao, Binli
    Zhou, Jun
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (03) : 1599 - 1612