An evidence-based approach for open-domain question answering

被引:0
|
作者
Jafarzadeh, Parastoo [1 ]
Ensan, Faezeh [1 ]
机构
[1] Toronto Metropolitan Univ, Toronto, ON, Canada
关键词
Question answering; Contextual representation; Textual knowledge graph;
D O I
10.1007/s10115-024-02269-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Open-domain question answering (ODQA) stands at the forefront of advancing natural language understanding and information retrieval. Traditional ODQA systems, which predominantly utilize a two-step process of information retrieval followed by reading module, face significant challenges in aligning retrieved passages with the contextual nuances of user queries. This paper introduces a novel methodology that leverages a semi-structured knowledge graph to enhance both the accuracy and relevance of answers in ODQA systems. Our model employs a threefold approach: firstly, it extracts and ranks evidence from a textual knowledge graph, a semi-structured knowledge graph where the nodes are real-world entities and the edges are sentences that two entities co-occur in, based on the contextual relationships relevant to the question. Secondly, it utilizes this ranked evidence to re-rank initially retrieved passages, ensuring that they align more closely with the query's context. Thirdly, it integrates this evidence into a generative reading component to construct precise and context-rich answers. We compare our model, termed contextual evidence-based question answering (CEQA), against traditional and state-of-the-art ODQA systems across several datasets, including TriviaQA, Natural Questions, and SQuAD Open. Our extensive experiments and ablation studies show that CEQA significantly outperforms existing methods by improving both the relevance of retrieved passages and the accuracy of the generated answers, thereby establishing a new benchmark in ODQA.
引用
收藏
页码:1969 / 1991
页数:23
相关论文
共 50 条
  • [31] Open-Domain Non-factoid Question Answering
    Khvalchik, Maria
    Kulkarni, Anagha
    TEXT, SPEECH, AND DIALOGUE, TSD 2017, 2017, 10415 : 290 - 298
  • [32] Hybrid Hierarchical Retrieval for Open-Domain Question Answering
    Arivazhagan, Manoj Ghuhan
    Li, Lan
    Qi, Peng
    Chen, Xinchi
    Wang, William Yang
    Huang, Zhiheng
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023), 2023, : 10680 - 10689
  • [33] Visual Explanation for Open-Domain Question Answering With BERT
    Shao, Zekai
    Sun, Shuran
    Zhao, Yuheng
    Wang, Siyuan
    Wei, Zhongyu
    Gui, Tao
    Turkay, Cagatay
    Chen, Siming
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (07) : 3779 - 3797
  • [34] Learning Transferable Features for Open-Domain Question Answering
    Zuin, Gianlucca
    Chaimowicz, Luiz
    Veloso, Adriano
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [35] Open-Domain Question Answering with Pre-Constructed Question Spaces
    Xiao, Jinfeng
    Wang, Lidan
    Dernoncourt, Franck
    Bui, Trung
    Sun, Tong
    Han, Jiawei
    2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), 2021, : 61 - 67
  • [36] Open-Domain Question Answering Goes Conversational via Question Rewriting
    Anantha, Raviteja
    Vakulenko, Svitlana
    Tu, Zhucheng
    Longpre, Shayne
    Pulman, Stephen
    Chappidi, Srinivas
    2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), 2021, : 520 - 534
  • [37] RobustQA: Benchmarking the Robustness of Domain Adaptation for Open-Domain Question Answering
    Han, Rujun
    Qi, Peng
    Zhang, Yuhao
    Liu, Lan
    Burger, Juliette
    Wang, William Yang
    Huang, Zhiheng
    Xiang, Bing
    Roth, Dan
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, 2023, : 4294 - 4311
  • [38] An Efficient Document Retrieval for Korean Open-Domain Question Answering Based on ColBERT
    Kang, Byungha
    Kim, Yeonghwa
    Shin, Youhyun
    Mourtzis, Dimitris
    APPLIED SCIENCES-BASEL, 2023, 13 (24):
  • [39] Learning to Transform, Combine, and Reason in Open-Domain Question Answering
    Dehghani, Mostafa
    Azarbonyad, Hosein
    Kamps, Jaap
    de Rijke, Maarten
    PROCEEDINGS OF THE TWELFTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM'19), 2019, : 681 - 689
  • [40] Fusing Essential Knowledge for Text-Based Open-Domain Question Answering
    Su, Xiao
    Li, Ying
    Wu, Zhonghai
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2021, PT II, 2021, 12713 : 627 - 639