Cr2AlC MAX phase: A promising bond coat TBC material with high resistance to high temperature oxidation

被引:0
|
作者
Shamsipoor, A. [1 ]
Mousavi, B. [1 ]
Razavi, M. [1 ]
Bahamirian, M. [2 ]
Farvizi, M. [1 ,3 ]
机构
[1] Mat & Energy Res Ctr, Dept Ceram, Karaj 31787316, Iran
[2] Yazd Univ, Dept Min & Met Engn, Yazd 89195741, Iran
[3] Univ Tabriz, Fac Mech Engn, Dept Mat Engn, Tabriz 5166616471, Iran
关键词
Thermal barrier coating (TBC); High temperature oxidation; CoNiCrAlY; MAX phase; Spark plasma sintering (SPS); THERMAL-SHOCK BEHAVIOR; HOT CORROSION BEHAVIOR; MECHANICAL CHARACTERIZATION; ENVIRONMENTAL RESISTANCE; STABILIZED ZIRCONIA; ELEMENTAL POWDERS; BARRIER COATINGS; CERAMICS; DEPOSITION; EVOLUTION;
D O I
10.1016/j.ceramint.2024.12.088
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The high-temperature oxidation behavior of Cr2AlC MAX phase and CoNiCrAlY used as bond coat layers in a thermal barrier coating (TBC) system with yttria-stabilized zirconia (YSZ) as the top coat is comparatively investigated in this study. The microstructural analysis revealed that the TBC system incorporating a Cr2AlC MAX phase bond coat exhibits exceptional resistance to oxidation, demonstrating no spallation even after exposure for up to 300 h under harsh conditions. This remarkable performance is attributed to the formation of a dense and protective alumina layer, which effectively mitigates oxidation and preserves the integrity of the coating system. The findings of this comparative study shed light on the superior oxidation resistance offered by Cr2AlC MAX phase as a bond coat material in TBC applications, offering valuable insights for the advancement of high- temperature protective coatings.
引用
收藏
页码:6439 / 6447
页数:9
相关论文
共 50 条
  • [41] High-Temperature Synthesis of Cast Cr2AlC at an Inert Gas Overpressure
    Miloserdov, P. A.
    Gorshkov, V. A.
    Yukhvid, V. I.
    INORGANIC MATERIALS, 2013, 49 (08) : 781 - 785
  • [42] Environmental resistance of Cr2AlC MAX phase under thermal gradient loading using a burner rig
    Gonzalez-Julian, Jesus
    Go, Teresa
    Mack, Daniel E.
    Vassen, Robert
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2018, 101 (05) : 1841 - 1846
  • [43] Oxidation and hot corrosion behaviors of MAX-phase Ti3SiC2, Ti2AlC, Cr2AlC
    Li, Xiaojing
    Wang, Shunhua
    Wu, Guixuan
    Zhou, Dapeng
    Pu, Jibin
    Yu, Miao
    Wang, Qiong
    Sun, Qinshuo
    CERAMICS INTERNATIONAL, 2022, 48 (18) : 26618 - 26628
  • [44] SHS Metallurgy of Cr2AlC MAX Phase-Based Cast Materials
    Gorshkov, V. A.
    Miloserdov, P. A.
    Sachkova, N. V.
    Luginina, M. A.
    Yukhvid, V. I.
    RUSSIAN JOURNAL OF NON-FERROUS METALS, 2018, 59 (05) : 570 - 575
  • [45] The effect of milling time and heat treatment on the synthesis of the Cr2AlC MAX phase
    Mansouri, Bahman
    Rafiei, Mahdi
    Ebrahimzadeh, Iman
    Naeimi, Farid
    Barekat, Masoud
    CANADIAN METALLURGICAL QUARTERLY, 2024, 63 (03) : 970 - 980
  • [46] High-Temperature Synthesis of Cast Materials Based on the MAX Phase Cr2AlC Using CaCrO4 + Al + C Mixtures
    V. A. Gorshkov
    P. A. Miloserdov
    N. V. Sachkova
    Inorganic Materials, 2020, 56 : 321 - 327
  • [47] High-Temperature Synthesis of Cast Materials Based on the MAX Phase Cr2AlC Using CaCrO4 + Al + C Mixtures
    Gorshkov, V. A.
    Miloserdov, P. A.
    Sachkova, N. V.
    INORGANIC MATERIALS, 2020, 56 (03) : 321 - 327
  • [48] Analytical electron microscopy study of new class material Cr2AlC for coating applications at high temperature environments
    Iskandar, R.
    2ND INTERNATIONAL SYMPOSIUM ON FRONTIER OF APPLIED PHYSICS (ISFAP 2016), 2017, 817
  • [49] SHS Metallurgy of Cr2AlC MAX Phase-Based Cast Materials
    V. A. Gorshkov
    P. A. Miloserdov
    N. V. Sachkova
    M. A. Luginina
    V. I. Yukhvid
    Russian Journal of Non-Ferrous Metals, 2018, 59 : 570 - 575
  • [50] Sintering behavior of Cr2AlC MAX phase synthesized by Spark plasma sintering
    Zakeri-Shahroudi, Fatemeh
    Ghasemi, Behrooz
    Abdolahpour, Hassan
    Razavi, Mansour
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2022, 19 (03) : 1309 - 1318