Batch process quality prediction based on denoising autoencoder-spatial temporal convolutional attention mechanism fusion network

被引:0
|
作者
Zhang, Yan [1 ,2 ]
Cao, Jie [1 ,4 ]
Zhao, Xiaoqiang [1 ,2 ,3 ]
Hui, Yongyong [1 ,2 ,3 ]
机构
[1] Lanzhou Univ Technol, Coll Elect & Informat Engn, Lanzhou, Peoples R China
[2] Lanzhou Univ Technol, Key Lab Gansu Adv Control Ind Proc, Lanzhou, Peoples R China
[3] Lanzhou Univ Technol, Natl Expt Teaching Ctr Elect & Control Engn, Lanzhou, Peoples R China
[4] Mfg Informatizat Engn Res Ctr Gansu Prov, Lanzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Batch processes; Quality prediction; Denoising-Autoencoder; Maximum Information Coefficient; Spatiotemporal convolutional attention; MANUFACTURING PROCESS; PRODUCT QUALITY; MODEL; DIAGNOSIS;
D O I
10.1007/s10489-025-06368-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In batch processes, the accurate prediction of quality variables plays a crucial role in smooth production and quality control. However, various sources of noise in the production environment cause abnormal data fluctuations that deviate from the real value. Coupled with the dynamic nonlinearity of batch processing and the complex spatiotemporal relationship of variables, which greatly increase the difficulty of prediction and pose a severe challenge to prediction performance. Therefore, a denoising autoencoder-Spatial Temporal Convolution Attention Fusion Network (DAE-STCAFN) prediction method is proposed. Firstly, combining DAE and maximum information coefficient (MIC), multi-level data features are extracted to prepare high-quality input data for the quality prediction model. DAE is used to denoise the original data, and relevant variables are selected through MIC. Then, an augmented matrix is constructed to eliminate the autocorrelation of the selected variables in the time series. Secondly, a spatial temporal convolutional attention fusion mechanism is created to extract the spatial temporal fusion features between the input and output variable sequences. Thirdly, to further enhance the learning ability of the model, a batch attention module is constructed to automatically learn the relationship among sample in small batch. Finally, experiments were carried out on the simulation platform of penicillin fermentation and hot tandem rolling process. In the prediction process of penicillin concentration, RMSE and MAE of the proposed method were 0.0099 and 0.0077, respectively. In the prediction of strip thickness, the RMSE and MAE are 0.0008 and 0.0003 respectively. The results show that the proposed method is effective both in simulation experiment and in actual industrial production in terms of prediction accuracy, stability and generalization ability.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Temporal–spatial coupled model for multi-prediction of tunnel structure: using deep attention-based temporal convolutional network
    Xuyan Tan
    Weizhong Chen
    Jianping Yang
    Xianjun Tan
    Journal of Civil Structural Health Monitoring, 2022, 12 : 675 - 687
  • [42] Attention based spatial-temporal graph convolutional networks for boiler NOx prediction
    Zhou, Yongqing
    Hao, Dawei
    Fan, Yuchen
    Wen, Xintong
    Wei, Chang
    Liu, Xin
    Zhang, Wenzhen
    Wang, Heyang
    Meitan Xuebao/Journal of the China Coal Society, 2024, 49 (10): : 4127 - 4137
  • [43] Network flow prediction based on spatial-temporal features fusion
    Xue Z.
    Lu Y.
    Ning Q.
    Huang L.
    Chen B.
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2023, 55 (05): : 30 - 38
  • [44] Temporal convolution network based on attention mechanism for well production prediction
    Zhen, Yan
    Fang, Junyi
    Zhao, Xiaoming
    Ge, Jiawang
    Xiao, Yifei
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 218
  • [45] LGTCN: A Spatial-Temporal Traffic Flow Prediction Model Based on Local-Global Feature Fusion Temporal Convolutional Network
    Ye, Wei
    Kuang, Haoxuan
    Deng, Kunxiang
    Zhang, Dongran
    Li, Jun
    APPLIED SCIENCES-BASEL, 2024, 14 (19):
  • [46] Network Traffic Prediction with Attention-based Spatial-Temporal Graph Network
    Peng, Yufei
    Guo, Yingya
    Hao, Run
    Lin, Junda
    2023 IEEE 24TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE SWITCHING AND ROUTING, HPSR, 2023,
  • [47] A Novel Convolution Network Based on Temporal Attention Fusion Mechanism for Remaining Useful Life Prediction of Rolling Bearings
    Meng, Zong
    Xu, Bo
    Cao, Lixiao
    Fan, Fengjie
    Li, Jimeng
    IEEE SENSORS JOURNAL, 2023, 23 (04) : 3990 - 3999
  • [48] Network traffic prediction with Attention-based Spatial-Temporal Graph Network
    Peng, Yufei
    Guo, Yingya
    Hao, Run
    Xu, Chengzhe
    COMPUTER NETWORKS, 2024, 243
  • [49] A real spatial-temporal attention denoising network for nugget quality detection in resistance spot weld
    Zhou, Jie
    Xi, Zerui
    Wang, Shilong
    Yang, Bo
    Zhang, Youhong
    Zhang, Yucheng
    JOURNAL OF INTELLIGENT MANUFACTURING, 2024, 35 (06) : 2743 - 2764
  • [50] Research on Groundwater Level Prediction Method in Karst Areas Based on Improved Attention Mechanism Fusion Time Convolutional Network
    Yu, Lina
    Zhou, Yinjun
    Hu, Yao
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2024, 58 (05) : 481 - 490