Forest Fire Surveillance Through Deep Learning Segmentation and Drone Technology

被引:0
|
作者
Yandouzi, Mimoun [1 ,4 ]
Boukricha, Sokaina [1 ,4 ]
Grari, Mounir [2 ,4 ]
Berrahal, Mohammed [3 ,4 ]
Moussaoui, Omar [2 ,4 ]
Azizi, Mostafa [2 ,4 ]
Ghoumid, Kamal [1 ,4 ]
Elmiad, Aissa Kerkour [3 ,4 ]
机构
[1] Mohammed First Univ, LSI, ENSAO, Oujda, Morocco
[2] Mohammed First Univ, MATSI, ESTO, Oujda, Morocco
[3] Cadi Ayyad Univ, LMC, PFS, Safi, Morocco
[4] Mohammed First Univ, LARI, FSO, Oujda, Morocco
关键词
Forest fires; Deep Learning; Segmentation; UAV (Drone); Mask R-CNN; YOLO;
D O I
10.1007/978-3-031-66850-0_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Forests are essential to our planet's well-being, playing a vital role in climate regulation, biodiversity preservation, and soil protection, thus serving as a cornerstone of our global ecosystem. The threat posed by forest fires highlights the critical need for early detection systems, which are indispensable tools in safeguarding ecosystems, livelihoods, and communities from devastating destruction. In combating forest fires, a range of techniques is employed for efficient early detection. Notably, the combination of drones with artificial intelligence, particularly deep learning, holds significant promise in this regard. Image segmentation emerges as a versatile method, involving the partitioning of images into multiple segments to simplify representation, and it leverages deep learning for fire detection, continuous monitoring of high-risk areas, and precise damage assessment. This study provides a comprehensive examination of recent advancements in semantic segmentation based on deep learning, with a specific focus on Mask R-CNN (Mask Region Convolutional Neural Network) and YOLO (You Only Look Once) v5, v7, and v8 variants. The emphasis is placed on their relevance in forest fire monitoring, utilizing drones equipped with high-resolution cameras.
引用
收藏
页码:3 / 12
页数:10
相关论文
共 50 条
  • [21] LIGHTWEIGHT FOREST FIRE DETECTION BASED ON DEEP LEARNING
    Fan, Ruixian
    Pei, Mingtao
    2021 IEEE 31ST INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2021,
  • [22] Forest Fire Spread Prediction using Deep Learning
    Khennou, Fadoua
    Ghaoui, Jade
    Akhloufi, Moulay A.
    GEOSPATIAL INFORMATICS XI, 2021, 11733
  • [23] FOREST PLANTATION DETECTION THROUGH DEEP SEMANTIC SEGMENTATION
    Dallaqua, F. B. J. R.
    Rosa, R. A. S.
    Schultz, B.
    Faria, L. R.
    Rodrigues, T. G.
    Oliveira, C. G.
    Kieser, M. E. J.
    Malhotra, V
    Dwyer, T.
    Wolfe, D. S.
    XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 43-B3 : 77 - 84
  • [24] Drone Navigation and Avoidance of Obstacles Through Deep Reinforcement Learning
    Cetin, Ender
    Barrado, Cristina
    Munoz, Guillem
    Macias, Miguel
    Pastor, Enric
    2019 IEEE/AIAA 38TH DIGITAL AVIONICS SYSTEMS CONFERENCE (DASC), 2019,
  • [25] Deep Learning Based Fire Detection System for Surveillance Videos
    Wang, Hao
    Pan, Zhiying
    Zhang, Zhifei
    Song, Hongzhang
    Zhang, Shaobo
    Zhang, Jianhua
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2019, PT II, 2019, 11741 : 318 - 328
  • [26] Semantic Segmentation of Drone Imagery Using Deep Learning for Seagrass Habitat Monitoring
    Jeon, Eui-Ik
    Kim, Seong-Hak
    Kim, Byoung-Sub
    Park, Kyung-Hyun
    Choi, Ock-In
    KOREAN JOURNAL OF REMOTE SENSING, 2020, 36 (02) : 199 - 215
  • [27] Fire-Net: A Deep Learning Framework for Active Forest Fire Detection
    Seydi, Seyd Teymoor
    Saeidi, Vahideh
    Kalantar, Bahareh
    Ueda, Naonori
    Halin, Alfian Abdul
    JOURNAL OF SENSORS, 2022, 2022
  • [28] Arduino based Sensor Equipped Fire Surveillance Drone
    Joseph, Richard
    Gopalani, Devashish
    Khubnani, Bhavesh
    Bote, Aniket
    Devadiga, Roshan
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 219 - 223
  • [29] Human Object Detection in Forest with Deep Learning based on Drone's Vision
    Yong, Suet-Peng
    Yeong, Yoon-Chow
    2018 4TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCES (ICCOINS), 2018,
  • [30] Research on the identification method for the forest fire based on deep learning
    Liu, Zhaochun
    Zhang, Kai
    Wang, Chenyang
    Huang, Siyu
    OPTIK, 2020, 223