Large Language Models are Complex Table Parsers

被引:0
|
作者
Zhao, Bowen [1 ]
Ji, Changkai [2 ]
Zhang, Yuejie [1 ]
He, Wen [3 ]
Wang, Yingwen [3 ]
Wang, Qing [3 ]
Feng, Rui [1 ,2 ,3 ]
Zhang, Xiaobo [3 ]
机构
[1] Fudan Univ, Sch Comp Sci, Shanghai Key Lab Intelligent Informat Proc, Shanghai 200433, Peoples R China
[2] Fudan Univ, Acad Engn & Technol, Shanghai, Peoples R China
[3] Fudan Univ, Natl Childrens Med Ctr, Childrens Hosp, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the Generative Pre-trained Transformer 3.5 (GPT-3.5) exhibiting remarkable reasoning and comprehension abilities in Natural Language Processing (NLP), most Question Answering (QA) research has primarily centered around general QA tasks based on GPT, neglecting the specific challenges posed by Complex Table QA. In this paper, we propose to incorporate GPT-3.5 to address such challenges, in which complex tables are reconstructed into tuples and specific prompt designs are employed for dialogues. Specifically, we encode each cell's hierarchical structure, position information, and content as a tuple. By enhancing the prompt template with an explanatory description of the meaning of each tuple and the logical reasoning process of the task, we effectively improve the hierarchical structure awareness capability of GPT-3.5 to better parse the complex tables. Extensive experiments and results on Complex Table QA datasets, i.e., the open-domain dataset HiTAB and the aviation domain dataset AIT-QA show that our approach significantly outperforms previous work on both datasets, leading to state-of-the-art (SOTA) performance.
引用
收藏
页码:14786 / 14802
页数:17
相关论文
共 50 条
  • [41] Editorial on large language models
    Deibert, Christopher M.
    TRANSLATIONAL ANDROLOGY AND UROLOGY, 2024, 13 (05) : 897 - 898
  • [42] On Finetuning Large Language Models
    Wang, Yu
    POLITICAL ANALYSIS, 2023,
  • [43] Large Language Models and Psychoeducation
    Kleebayoon, Amnuay
    Wiwanitkit, Viroj
    JOURNAL OF ECT, 2024, 40 (01) : e1 - e1
  • [44] Large Language Models and Security
    Bezzi, Michele
    IEEE SECURITY & PRIVACY, 2024, 22 (02) : 60 - 68
  • [45] Large Language Models and Biorisk
    D'Alessandro, William
    Lloyd, Harry R.
    Sharadin, Nathaniel
    AMERICAN JOURNAL OF BIOETHICS, 2023, 23 (10): : 115 - 118
  • [46] Large language models in science
    Kowalewski, Karl-Friedrich
    Rodler, Severin
    UROLOGIE, 2024, 63 (09): : 860 - 866
  • [47] Large Language Models in Orthopaedics
    Yao, Jie J.
    Aggarwal, Manan
    Lopez, Ryan D.
    Namdari, Surena
    JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 2024, 106 (15): : 1411 - 1418
  • [48] A GRAMMAR DESCRIPTION LANGUAGE FOR LEXICAL AND SYNTACTIC PARSERS
    GENILLARD, C
    STROHMEIER, A
    SIGPLAN NOTICES, 1988, 23 (10): : 103 - 122
  • [49] NETWORKS OF EVOLUTIONARY PROCESSORS AS NATURAL LANGUAGE PARSERS
    Bel-Enguix, Gemma
    Dolores Jimenez-Lopez, M.
    Merca, Robert
    Perekrestenko, Alexander
    ICAART 2009: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, 2009, : 619 - +
  • [50] Einsatzmöglichkeiten von „large language models“ in der OnkologieApplications of large language models in oncology
    Chiara M. Loeffler
    Keno K. Bressem
    Daniel Truhn
    Die Onkologie, 2024, 30 (5) : 388 - 393