Protocol for immunofluorescence staining and large-scale analysis to quantify microglial cell morphology at single-cell resolution in mice

被引:0
|
作者
Mogensen, Frida Lind-Holm [1 ,2 ]
Ameli, Corrado [3 ]
Skupin, Alexander [3 ,4 ,5 ]
Michelucci, Alessandro [1 ,4 ]
机构
[1] Luxembourg Inst Hlth, Dept Canc Res, Neuroimmunol Grp, 6A Rue Nicolas Ernest Barble, L-1210 Luxembourg, Luxembourg
[2] Univ Luxembourg, Fac Sci Technol & Med, 2 Ave Univ, L-4365 Esch Sur Alzette, Luxembourg
[3] Univ Luxembourg, Luxembourg Ctr Syst Biomed, Integrat Cell Signalling Grp, 7 Ave Hauts Fourneaux, L-4362 Esch Sur Alzette, Luxembourg
[4] Univ Calif San Diego, Dept Neurosci, 9500 Gillman Dr, La Jolla, CA 92093 USA
[5] Univ Luxembourg, Dept Phys & Mat Sci, Integrat Biophys, 162a Ave Faiencerie, L-1511 Luxembourg, Luxembourg
来源
STAR PROTOCOLS | 2024年 / 5卷 / 04期
关键词
D O I
10.1016/j.xpro.2024.103467
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Here, we present a protocol for quantifying microglial cell morphology at the single-cell level in mice. We provide comprehensive details, starting from optimal mouse brain dissection to computational analyses of up to 350 microglial cells per brain slice. Analyzing the morphology of microglial cells is essential for understanding their functional and activation states in different conditions, including during disease development and progression, as well as for assessing the effect of therapeutic interventions. For complete details on the use and execution of this protocol, please refer to Lind-Holm Mogensen et al.1 and Fixemer et al.2
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Large-scale single-cell dissection of immune dysregulation in patients with monoclonal gammopathies
    Sklavenitis-Pistofidis, Romanos
    Wu, Ting
    Lightbody, Elizabeth
    Konishi, Yoshinobu
    Rahmat, Mahshid
    Timonian, Michael
    Tsuji, Junko
    Aranha, Michelle
    Firer, Danielle
    Haradhvala, Nicholas
    Heilpern-Mallory, Daniel
    Getz, Gad
    Ghobrial, Irene
    CLINICAL LYMPHOMA MYELOMA & LEUKEMIA, 2023, 23 : S267 - S268
  • [22] A large-scale benchmark for network inference from single-cell perturbation data
    Chevalley, Mathieu
    Roohani, Yusuf H.
    Mehrjou, Arash
    Leskovec, Jure
    Schwab, Patrick
    COMMUNICATIONS BIOLOGY, 2025, 8 (01)
  • [23] Deep-learning methods for unveiling large-scale single-cell transcriptomes
    Shen, Xilin
    Li, Xiangchun
    CANCER BIOLOGY & MEDICINE, 2023, 20 (12) : 972 - 980
  • [24] Deep-learning methods for unveiling large-scale single-cell transcriptomes
    Xilin Shen
    Xiangchun Li
    Cancer Biology & Medicine, 2023, 20 (12) : 972 - 980
  • [25] Single-cell gene regulation network inference by large-scale data integration
    Dong, Xin
    Tang, Ke
    Xu, Yunfan
    Wei, Hailin
    Han, Tong
    Wang, Chenfei
    NUCLEIC ACIDS RESEARCH, 2022, 50 (21) : E126
  • [26] Development of a single-cell array for large-scale DNA fluorescence in situ hybridization
    Liu, Yingru
    Kirkland, Brett
    Shirley, James
    Wang, Zhibin
    Zhang, Peipei
    Stembridge, Jacquelyn
    Wong, Wilson
    Takebayashi, Shin-ichiro
    Gilbert, David M.
    Lenhert, Steven
    Guan, Jingjiao
    LAB ON A CHIP, 2013, 13 (07) : 1316 - 1324
  • [27] Optimized multiplex immunofluorescence single-cell analysis reveals tuft cell heterogeneity
    McKinley, Eliot T.
    Sui, Yunxia
    Al-Kofahi, Yousef
    Millis, Bryan A.
    Tyska, Matthew J.
    Roland, Joseph T.
    Santamaria-Pang, Alberto
    Ohland, Christina L.
    Jobin, Christian
    Franklin, Jeffrey L.
    Lau, Ken S.
    Gerdes, Michael J.
    Coffey, Robert J.
    JCI INSIGHT, 2017, 2 (11)
  • [28] Toward global parametric estimability of a large-scale kinetic single-cell model for mammalian cell cultures
    Sidoli, FR
    Mantalaris, A
    Asprey, SP
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2005, 44 (04) : 868 - 878
  • [29] Scarf enables a highly memory-efficient analysis of large-scale single-cell genomics data
    Dhapola, Parashar
    Rodhe, Johan
    Olofzon, Rasmus
    Bonald, Thomas
    Erlandsson, Eva
    Soneji, Shamit
    Karlsson, Goran
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [30] Scarf enables a highly memory-efficient analysis of large-scale single-cell genomics data
    Parashar Dhapola
    Johan Rodhe
    Rasmus Olofzon
    Thomas Bonald
    Eva Erlandsson
    Shamit Soneji
    Göran Karlsson
    Nature Communications, 13