Association Graph Learning for Multi-Task Classification with Category Shifts

被引:0
|
作者
Shen, Jiayi [1 ]
Xiao, Zehao [1 ]
Zhen, Xiantong [1 ,2 ,3 ]
Snoek, Cees G. M. [1 ]
Worring, Marcel [1 ]
机构
[1] Univ Amsterdam, AIM Lab, Amsterdam, Netherlands
[2] Inception Inst Artificial Intelligence, Abu Dhabi, U Arab Emirates
[3] United Imaging Healthcare Co Ltd, Shanghai, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we focus on multi-task classification, where related classification tasks share the same label space and are learned simultaneously. In particular, we tackle a new setting, which is more realistic than currently addressed in the literature, where categories shift from training to test data. Hence, individual tasks do not contain complete training data for the categories in the test set. To generalize to such test data, it is crucial for individual tasks to leverage knowledge from related tasks. To this end, we propose learning an association graph to transfer knowledge among tasks for missing classes. We construct the association graph with nodes representing tasks, classes and instances, and encode the relationships among the nodes in the edges to guide their mutual knowledge transfer. By message passing on the association graph, our model enhances the categorical information of each instance, making it more discriminative. To avoid spurious correlations between task and class nodes in the graph, we introduce an assignment entropy maximization that encourages each class node to balance its edge weights. This enables all tasks to fully utilize the categorical information from related tasks. An extensive evaluation on three general benchmarks and a medical dataset for skin lesion classification reveals that our method consistently performs better than representative baselines.(1)
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Curriculum Learning for Multi-Task Classification of Visual Attributes
    Sarafianos, Nikolaos
    Giannakopoulos, Theodore
    Nikou, Christophoros
    Kakadiaris, Ioannis A.
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 2608 - 2615
  • [22] Multi-task gradient descent for multi-task learning
    Lu Bai
    Yew-Soon Ong
    Tiantian He
    Abhishek Gupta
    Memetic Computing, 2020, 12 : 355 - 369
  • [23] Multi-task gradient descent for multi-task learning
    Bai, Lu
    Ong, Yew-Soon
    He, Tiantian
    Gupta, Abhishek
    MEMETIC COMPUTING, 2020, 12 (04) : 355 - 369
  • [24] Hierarchical Multi-Task Learning for Healthy Drink Classification
    Park, Homin
    Bharadhwaj, Homanga
    Lim, Brian Y.
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [25] Multi-Task Diffusion Learning for Time Series Classification
    Zheng, Shaoqiu
    Liu, Zhen
    Tian, Long
    Ye, Ling
    Zheng, Shixin
    Peng, Peng
    Chu, Wei
    ELECTRONICS, 2024, 13 (20)
  • [26] Survey on multi-task learning for object classification and recognition
    Li H.
    Wang F.
    Ding W.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2022, 43 (01):
  • [27] Multi-task learning for classification with Dirichlet process priors
    Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, United States
    不详
    J. Mach. Learn. Res., 2007, (35-63):
  • [28] Deep multi-task learning for malware image classification
    Bensaoud, Ahmed
    Kalita, Jugal
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2022, 64
  • [29] Guided Learning: A New Paradigm for Multi-task Classification
    Fu, Jingru
    Zhang, Lei
    Zhang, Bob
    Jia, Wei
    BIOMETRIC RECOGNITION, CCBR 2018, 2018, 10996 : 239 - 246
  • [30] A multi-task learning network for skin disease classification
    Wang, W.
    Wang, Y.
    Zhao, S.
    Chen, X.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2022, 142 (08) : S52 - S52