In Situ Reinforced CoCrFeNiTi High-Entropy Alloy Composite Coating: Microstructure, Mechanical Properties, and Wear Resistance

被引:0
|
作者
Lu, Pengwei [1 ,2 ]
Liu, Jianhui [1 ,2 ]
Ma, Qingliang [1 ]
Fu, Binguo [1 ,2 ]
Dong, Tianshun [1 ,2 ]
Li, Guolu [1 ,2 ]
Li, Jingkun [1 ]
机构
[1] Hebei Univ Technol, Sch Mat Sci & Engn, Tianjin 300401, Peoples R China
[2] Hebei Univ Technol, Hebei Key Lab New Funct Mat, Tianjin 300401, Peoples R China
关键词
eutectic microstructure; high-entropy alloy composite coating; in-situ generate; mechanical properties; wear resistance; FRACTURE-TOUGHNESS;
D O I
10.1007/s11665-024-10490-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In order to obtain a high-entropy alloy composite coating with high performance, CoCrFeNiTi coatingd and CoCrFeNiTi-B4C coatings were prepared on the surface of AISI 1045 steel by plasma spraying and was remelted by laser technology subsequently. The microstructure, mechanical properties and wear resistance of the two remelted coatings were comparatively studied. The phases of CoCrFeNiTi and CoCrFeNiTi-B4C remelted coating are mainly composed of FCC solid solution structure, but the difference is that the latter has in-situ generated reinforcing phases TiC and eutectic structure (FCC + BCC + (Fe,Cr)2B). Among them, the eutectic structure was cored around in-situ generated (Fe,Cr)2B. Compared with the CoCrFeNiTi remelted coating, the hardness of the CoCrFeNiTi-B4C remelted coating increased from 475 HV0.2 to 747 HV0.2, and the elastic modulus and fracture toughness increased by 6.1 and 119.0%, respectively. Under dry friction condition, the wear rate of the CoCrFeNiTi remelted coating was 5.66 x 10-5 mm3/N m, while that of the CoCrFeNiTi-B4C remelted coating was only 2.28 x 10-6 mm3/N m. The wear mechanism of CoCrFeNiTi remelted coating was mainly abrasive wear, accompanied by adhesive wear and fatigue wear. The wear mechanism of CoCrFeNiTi-B4C remelted coating was mainly fatigue wear, accompanied by slight abrasive wear. Therefore, the CoCrFeNiTi-B4C remelted coating had superior mechanical properties and wear resistance.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Microstructure and mechanical properties of in-situ nitride-reinforced refractory high-entropy alloy TiZrHfNbTa matrix composites
    Tian, Yusheng
    Zhou, Wenzhe
    Wu, Mingxu
    Luo, Hua
    Tan, Qingbiao
    Zhu, Guoliang
    Dong, Anping
    Shu, Da
    Sun, Baode
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 915
  • [32] Microstructure and mechanical properties of a refractory HfNbTiVSi0.5 high-entropy alloy composite
    Zhang, Yan
    Liu, Yuan
    Li, Yanxiang
    Chen, Xiang
    Zhang, Huawei
    MATERIALS LETTERS, 2016, 174 : 82 - 85
  • [33] Effect of Al Content on Erosion Wear Resistance and Corrosion Resistance of CoCrFeNiTi0.5 High-entropy Alloy Coatings
    Zhao J.
    Jin R.
    Ji X.
    Duan T.
    Zhuang S.
    Zhao Z.
    Cailiao Daobao/Materials Reports, 2023, 37 (17):
  • [34] Microstructure, Mechanical Properties, Corrosion Resistance and Mechanism Analysis of AlZnMgCuMn High-Entropy Alloy
    Guo, Wenhui
    Qi, Mingfan
    Xu, Yuzhao
    Li, Jingyuan
    Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2022, 51 (07): : 2570 - 2577
  • [35] Microstructure, Mechanical Properties, Corrosion Resistance and Mechanism Analysis of AlZnMgCuMn High-Entropy Alloy
    Guo Wenhui
    Qi Mingfan
    Xu Yuzhao
    Li Jingyuan
    RARE METAL MATERIALS AND ENGINEERING, 2022, 51 (07) : 2570 - 2577
  • [36] Microstructure and Corrosive Wear Properties of CoCrFeNiMn High-Entropy Alloy Coatings
    Wang, Haodong
    Kang, Jiajie
    Yue, Wen
    Jin, Guo
    Li, Runjie
    Zhou, Yongkuan
    Liang, Jian
    Yang, Yuyun
    MATERIALS, 2023, 16 (01)
  • [37] Microstructure and Mechanical Properties of a Multiphase FeCrCuMnNi High-Entropy Alloy
    Shabani, Ali
    Toroghinejad, Mohammad Reza
    Shafyei, Ali
    Loge, Roland E.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2019, 28 (04) : 2388 - 2398
  • [38] Microstructure and Mechanical Properties of a Multiphase FeCrCuMnNi High-Entropy Alloy
    Ali Shabani
    Mohammad Reza Toroghinejad
    Ali Shafyei
    Roland E. Logé
    Journal of Materials Engineering and Performance, 2019, 28 : 2388 - 2398
  • [39] Microstructure and Mechanical Properties of a Refractory CoCrMoNbTi High-Entropy Alloy
    Mina Zhang
    Xianglin Zhou
    Jinghao Li
    Journal of Materials Engineering and Performance, 2017, 26 : 3657 - 3665
  • [40] Processing, Microstructure and Mechanical Properties of the CrMnFeCoNi High-Entropy Alloy
    Gludovatz, Bernd
    George, Easo P.
    Ritchie, Robert O.
    JOM, 2015, 67 (10) : 2262 - 2270