共 50 条
Mining biology for antibiotic discovery
被引:1
|作者:
de la Fuente-nunez, Cesar
[1
,2
,3
,4
,5
,6
,7
]
机构:
[1] Univ Penn, Inst Biomed Informat, Inst Translat Med & Therapeut, Perelman Sch Med,Machine Biol Grp,Dept Psychiat, Philadelphia, PA 19104 USA
[2] Univ Penn, Inst Biomed Informat, Inst Translat Med & Therapeut, Perelman Sch Med,Machine Biol Grp,Dept Microbiol, Philadelphia, PA 19104 USA
[3] Univ Penn, Sch Engn & Appl Sci, Dept Bioengn, Philadelphia, PA 19104 USA
[4] Univ Penn, Sch Engn & Appl Sci, Dept Chem, Philadelphia, PA 19104 USA
[5] Univ Penn, Sch Engn & Appl Sci, Dept Biomol Engn, Philadelphia, PA 19104 USA
[6] Univ Penn, Sch Arts & Sci, Dept Chem, Philadelphia, PA 19104 USA
[7] Univ Penn, Penn Inst Computat Sci, Philadelphia, PA 19104 USA
关键词:
D O I:
10.1371/journal.pbio.3002946
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
The rise of antibiotic resistance calls for innovative solutions. The realization that biology can be mined digitally using artificial intelligence has revealed a new paradigm for antibiotic discovery, offering hope in the fight against superbugs.
引用
收藏
页数:4
相关论文