Genome editing of porcine zygotes via lipofection of two guide RNAs using a CRISPR/Cas9 system

被引:0
|
作者
Lin, Qingyi [1 ,2 ]
Takebayashi, Koki [1 ,2 ]
Torigoe, Nanaka [1 ,2 ]
Liu, Bin [1 ,2 ]
Namula, Zhao [1 ,2 ,3 ]
Hirata, Maki [1 ,2 ]
Tanihara, Fuminori [1 ,4 ]
Nagahara, Megumi [1 ,2 ]
Otoi, Takeshige [1 ,2 ]
机构
[1] Tokushima Univ, Bioinnovat Res Ctr, Tokushima 7793233, Japan
[2] Tokushima Univ, Fac Biosci & Bioind, Tokushima 7793233, Japan
[3] Guangdong Ocean Univ, Coll Coastal Agr Sci, Zhanjiang 524091, Peoples R China
[4] Jichi Med Univ, Ctr Dev Adv Med Technol, Shimotsuke, Tochigi 3290498, Japan
来源
基金
日本学术振兴会;
关键词
CRISPR/Cas9; system; Growth hormone receptor (GHR); Glycoprotein alpha-galactosyltransferase 1 ( GGTA1 ); Lipofection; Porcine zygote; GENE; GENERATION; CULTURE; MODEL;
D O I
暂无
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
CRISPR/Cas9-based multiplex genome editing via electroporation is relatively efficient; however, lipofection is versatile because of its ease of use and low cost. Here, we aimed to determine the efficiency of lipofection in CRISPR/Cas9-based multiplex genome editing using growth hormone receptor (GHR) and glycoprotein alphagalactosyltransferase 1 (GGTA1)-targeting guide RNAs (gRNAs) in pig zygotes. Zona pellucida-free zygotes were collected 10 h after in vitro fertilization and incubated with Cas9, gRNAs, and Lipofectamine 2000 (LP2000) for 5 h. In Experiment 1, we evaluated the mutation efficiency of gRNAs targeting either GHR or GGTA1 in zygotes transfected using LP2000 and cultured in 4-well plates. In Experiment 2, we examined the effects of the culture method on the development, mutation rate, and mutation efficiency of zygotes with simultaneously double-edited GHR and GGTA1, cultured using 4-well (group culture) and 25-well plates (individual culture). In Experiment 3, we assessed the effect of additional GHR-targeted lipofection before and after simultaneous double gRNA-targeted lipofection on the mutation efficiency of edited embryos cultured in 25-well plates. No significant differences in mutation rates were observed between the zygotes edited with either gRNA. Moreover, the formation rate of blastocysts derived from GHR and GGTA1 double-edited zygotes was significantly increased in the 25-well plate culture compared to that in the 4-well plate culture. However, mutations were only observed in GGTA1 when zygotes were transfected with both gRNAs, irrespective of the culture method used. GHR mutations were detected only in blastocysts derived from zygotes subjected to GHR-targeted lipofection before simultaneous double gRNA-targeted lipofection. Overall, our results suggest that additional lipofection before simultaneous double gRNA-targeted lipofection induces additional mutations in the zygotes.
引用
收藏
页码:356 / 361
页数:6
相关论文
共 50 条
  • [11] Efficient Genome Editing in Apple Using a CRISPR/Cas9 system
    Nishitani, Chikako
    Hirai, Narumi
    Komori, Sadao
    Wada, Masato
    Okada, Kazuma
    Osakabe, Keishi
    Yamamoto, Toshiya
    Osakabe, Yuriko
    SCIENTIFIC REPORTS, 2016, 6
  • [12] Biallelic editing of a lamprey genome using the CRISPR/Cas9 system
    Zu, Yao
    Zhang, Xushuai
    Ren, Jianfeng
    Dong, Xuehong
    Zhu, Zhe
    Jia, Liang
    Zhang, Qinghua
    Li, Weiming
    SCIENTIFIC REPORTS, 2016, 6
  • [13] Genome Editing of Babesia bovis Using the CRISPR/Cas9 System
    Hakimi, Hassan
    Ishizaki, Takahiro
    Kegawa, Yuto
    Kaneko, Osamu
    Kawazu, Shin-ichiro
    Asada, Masahito
    MSPHERE, 2019, 4 (03):
  • [14] Efficient Genome Editing in Apple Using a CRISPR/Cas9 system
    Chikako Nishitani
    Narumi Hirai
    Sadao Komori
    Masato Wada
    Kazuma Okada
    Keishi Osakabe
    Toshiya Yamamoto
    Yuriko Osakabe
    Scientific Reports, 6
  • [15] Genome editing with AAV using CRISPR/Cas9
    Wilson, J. M.
    HUMAN GENE THERAPY, 2016, 27 (11) : A18 - A18
  • [16] A porcine model of phenylketonuria generated by CRISPR/Cas9 genome editing
    Koppes, Erik A.
    Redel, Bethany K.
    Johnson, Marie A.
    Skvorak, Kristen J.
    Ghaloul-Gonzalez, Lina
    Yates, Megan E.
    Lewis, Dale W.
    Gollin, Susanne M.
    Wu, Yijen L.
    Christ, Shawn E.
    Yerle, Martine
    Leshinski, Angela
    Spate, Lee D.
    Benne, Joshua A.
    Murphy, Stephanie L.
    Samuel, Melissa S.
    Walters, Eric M.
    Hansen, Sarah A.
    Wells, Kevin D.
    Lichter-Konecki, Uta
    Wagner, Robert A.
    Newsome, Joseph T.
    Dobrowolski, Steven F.
    Vockley, Jerry
    Prather, Randall S.
    Nicholls, Robert D.
    JCI INSIGHT, 2020, 5 (20)
  • [17] Insights into maize genome editing via CRISPR/Cas9
    Agarwal, Astha
    Yadava, Pranjal
    Kumar, Krishan
    Singh, Ishwar
    Kaul, Tanushri
    Pattanayak, Arunava
    Agrawal, Pawan Kumar
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2018, 24 (02) : 175 - 183
  • [18] Insights into maize genome editing via CRISPR/Cas9
    Astha Agarwal
    Pranjal Yadava
    Krishan Kumar
    Ishwar Singh
    Tanushri Kaul
    Arunava Pattanayak
    Pawan Kumar Agrawal
    Physiology and Molecular Biology of Plants, 2018, 24 : 175 - 183
  • [19] An optimized electroporation approach for efficient CRISPR/Cas9 genome editing in murine zygotes
    Troeder, Simon E.
    Ebert, Lena K.
    Butt, Linus
    Assenmacher, Sonja
    Schermer, Bernhard
    Zevnik, Branko
    PLOS ONE, 2018, 13 (05):
  • [20] The CRISPR/Cas9 system for plant genome editing and beyond
    Bortesi, Luisa
    Fischer, Rainer
    BIOTECHNOLOGY ADVANCES, 2015, 33 (01) : 41 - 52