Neural network-based prediction of levoglucosan yield: A novel modeling approach

被引:0
|
作者
Ma, Jingjing [1 ]
Zhang, Shuai [1 ]
Liu, Xiangjun [1 ]
Wang, Junqi [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Human Settlements & Civil Engn, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Machine learning; Pyrolysis; Levoglucosan; Biomass; Levenberg-Marquardt backpropagation neural; network; FAST PYROLYSIS; PRETREATMENT; OPTIMIZATION; TEMPERATURE;
D O I
10.1016/j.energy.2025.135396
中图分类号
O414.1 [热力学];
学科分类号
摘要
Levoglucosan, as a high-value-added product from biomass pyrolysis, has become a focal point in biomass energy utilization due to its significant potential in various applications. In this study, nine variables were identified via Pearson analysis, and five neural network models predicted levoglucosan yield under various pyrolysis conditions. Results showed that the LM-BPNN fit exhibited excellent prediction accuracy (R-2>0.9, MAE<3, RMSE<5, MSE<25). Through SHAP analysis, the importance and correlation between experimental parameters and levoglucosan yield were clarified, with cellulose, as the main material for levoglucosan production, having the most significant positive impact on its yield. In addition, partial dependence analyses further explored the synergistic effects of biomass characteristics, reaction conditions and biomass pretreatment on levoglucosan yield. Among them, pyrolysis temperature, pyrolysis time, and biomass particle size all showed negative feedback with yield after reaching their peak ranges. In these analyses, the interactions between input features and output targets of the LM-BPNN model were explored to analyze in depth the regulation of experimental parameters for efficient levoglucosan production. This study highlights the potential of algorithm-enhanced neural networks in predicting high-value pyrolysis products, offering innovative pathways and scientific support for efficient solid waste utilization and advancing sustainable waste-to-energy technologies.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Neural Network-Based Approach for Design and Modeling Evolution Processes of Economic Clusters
    Babkin, E. A.
    Klimova, N. A.
    Kozyrev, O. R.
    RECENT DEVELOPMENTS AND NEW DIRECTION IN SOFT-COMPUTING FOUNDATIONS AND APPLICATIONS, 2016, 342 : 477 - 486
  • [22] On Effectiveness of Transfer Learning Approach for Neural Network-Based Virtual Metrology Modeling
    Kang, Seokho
    IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2018, 31 (01) : 149 - 155
  • [23] Neural Network-based Blocking Prediction for Dynamic Network Slicing
    Movva, Nitin Datta
    Ishigaki, Genya
    2024 33RD INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATIONS AND NETWORKS, ICCCN 2024, 2024,
  • [24] Novel Approach to Neural Network-based Motion Cueing Algorithm for a Driving Simulator
    Koyuncu, Ahmet Burakhan
    Ercelik, Emec
    Comulada-Simpson, Eduard
    Venrooij, Joost
    Kaboli, Mohsen
    Knoll, Alois
    2020 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2020, : 2118 - 2125
  • [25] A Novel Convolutional Neural Network-Based Approach for Fault Classification in Photovoltaic Arrays
    Aziz, Farkhanda
    Ul Haq, Azhar
    Ahmad, Shahzor
    Mahmoud, Yousef
    Jalal, Marium
    Ali, Usman
    IEEE ACCESS, 2020, 8 (08): : 41889 - 41904
  • [26] Neural network-based nonlinear prediction of magnetic storms
    Jankovicová, D
    Dolinsky, P
    Valach, F
    Vörös, Z
    JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2002, 64 (5-6) : 651 - 656
  • [27] Neural network-based construction of online prediction intervals
    Hadjicharalambous, Myrianthi
    Polycarpou, Marios M.
    Panayiotou, Christos G.
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (11): : 6715 - 6733
  • [28] Neural network-based prediction of phytoplankton primary production
    Ressom, H
    Musavi, MT
    Natarajan, P
    OCEAN OPTICS: REMOTE SENSING AND UNDERWATER IMAGING, 2002, 4488 : 213 - 220
  • [29] Neural network-based construction of online prediction intervals
    Myrianthi Hadjicharalambous
    Marios M. Polycarpou
    Christos G. Panayiotou
    Neural Computing and Applications, 2020, 32 : 6715 - 6733
  • [30] Convolution Neural Network-Based Prediction of Protein Thermostability
    Fang, Xingrong
    Huang, Jinsha
    Zhang, Rui
    Wang, Fei
    Zhang, Qiuyu
    Li, Guanlin
    Yan, Jinyong
    Zhang, Houjin
    Yan, Yunjun
    Xu, Li
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (11) : 4833 - 4843