An efficient kernel adaptive filtering algorithm with adaptive alternating filtering mechanism

被引:0
|
作者
Wang, Hong [1 ,2 ]
Han, Hongyu [1 ,2 ]
Zhang, Sheng [3 ]
Ku, Jinhua [1 ,2 ]
机构
[1] Sichuan Normal Univ, Coll Comp Sci, Chengdu 610066, Peoples R China
[2] Sichuan Normal Univ, Visual Comp & Virtual Real Key Lab Sichuan Prov, Chengdu 610066, Peoples R China
[3] Southwest Jiaotong Univ, Sch Informat Sci & Technol, Chengdu 611756, Sichuan, Peoples R China
关键词
Adaptive alternating filtering mechanism; Clustering sparse strategy; Kernel adaptive filter; Random Fourier features; DECAYS; J/PSI;
D O I
10.1016/j.dsp.2025.104997
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To effectively reduce the kernel conjugate gradient (KCG) algorithm's network size, this paper proposes an improved algorithm based on an adaptive alternating filtering mechanism (AAFM) called AAFM-KCG. The algorithm utilizes a clustering sparse strategy and the orthogonality of nearest instance centroid estimate subspaces to decompose the complex KCG filter into multiple nearly independent sub-filters. By alternately activating only the most relevant sub-filters for updates, it significantly reduces computational complexity and storage requirements while ensuring high filtering accuracy. Then, to establish a fixed-scale network structure, the random Fourier feature (RFF) technique is integrated, yielding the AAFM-RFFCG algorithm. Furthermore, for scenarios with non-Gaussian noise interference, we introduce a truncated generalized exponential hyperbolic tangent (TGEHT) function and embed it into the AAFM framework, refined into the T-AAFM-KCG and TAAFM-RFFCG algorithms. The simulation results demonstrate that the proposed algorithm achieves excellent computational efficiency and noise robustness in Lorenz chaotic time series prediction, nonlinear system identification, and sunspots time series prediction tasks.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] A fast algorithm for adaptive polynomial filtering
    Niemisto, R
    Tabus, I
    Astola, J
    SIGNAL PROCESSING, 1998, 70 (02) : 147 - 151
  • [42] Single Feedback Based Kernel Generalized Maximum Correntropy Adaptive Filtering Algorithm
    Liu, Jiaming
    Zhao, Ji
    Li, Qiang
    Tang, Lingli
    Zhang, Hongbin
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT I, 2024, 14447 : 3 - 14
  • [43] A FAST PROJECTION ALGORITHM FOR ADAPTIVE FILTERING
    TANAKA, M
    KANEDA, Y
    MAKINO, S
    KOJIMA, J
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1995, E78A (10) : 1355 - 1361
  • [44] DUAL SIGN ALGORITHM FOR ADAPTIVE FILTERING
    KWONG, CP
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1986, 34 (12) : 1272 - 1274
  • [45] An adaptive filtering algorithm with parameter acceleration
    Gerken, M
    Pait, FM
    Jojoa, PE
    2000 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS, VOLS I-VI, 2000, : 17 - 20
  • [46] An improved adaptive median filtering algorithm
    Quan Houde
    Zhang Hongcai
    Jia Hongtao
    PROCEEDINGS OF THE FIRST INTERNATIONAL SYMPOSIUM ON TEST AUTOMATION & INSTRUMENTATION, VOLS 1 - 3, 2006, : 1428 - 1431
  • [47] AN ADAPTIVE FILTERING ALGORITHM OF VELOCITY ESTIMATION
    Tao Weigang Feng Xinxi(Dept. of the Computer and Command Automation
    Journal of Electronics(China), 2000, (03) : 248 - 253
  • [48] AN INCOMPLETE FACTORIZATION ALGORITHM FOR ADAPTIVE FILTERING
    COMON, P
    TRYSTRAM, D
    SIGNAL PROCESSING, 1987, 13 (04) : 353 - 360
  • [49] A COMPLEX ADAPTIVE ALGORITHM FOR IIR FILTERING
    SHYNK, JJ
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1986, 34 (05): : 1342 - 1344
  • [50] Algorithm of adaptive morphological filtering of images
    Falomkin I.I.
    Pyt'ev Yu.P.
    Pattern Recogn. Image Anal., 2007, 3 (408-420): : 408 - 420