It is known that the automorphism group of any projective K3 surface is finitely generated. In this paper, we consider a certain kind of K3 surfaces with Picard number 3 whose automorphism groups are isomorphic to congruence subgroups of the modular group PSL 2 ( Z). In particular, we show that a free group of arbitrarily large rank appears as the automorphism group of such a K3 surface. (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
机构:
Univ La Frontera, Dept Matemat & Estadist, Av Francisco Salazar 1145, Temuco, ChileUniv La Frontera, Dept Matemat & Estadist, Av Francisco Salazar 1145, Temuco, Chile
Comparin, Paola
论文数: 引用数:
h-index:
机构:
Priddis, Nathan
Sarti, Alessandra
论文数: 0引用数: 0
h-index: 0
机构:
Univ Poitiers, Lab Math & Applicat, UMR 7348, CNRS, Bat H3 Site Futuroscope TSA 61125, F-86073 Poitiers 9, FranceUniv La Frontera, Dept Matemat & Estadist, Av Francisco Salazar 1145, Temuco, Chile