Time-Dependent Diffusion MRI Helps Predict Molecular Subtypes and Treatment Response to Neoadjuvant Chemotherapy in Breast Cancer

被引:3
|
作者
Wang, Xiaoxia [1 ]
Ba, Ruicheng [2 ]
Huang, Yao [3 ]
Cao, Ying [3 ]
Chen, Huifang [1 ]
Xu, Hanshan [1 ]
Shen, Hesong [1 ]
Liu, Daihong [1 ]
Huang, Haiping [4 ]
Yin, Ting [5 ]
Wu, Dan [2 ]
Zhang, Jiuquan [1 ]
机构
[1] Chongqing Univ, Canc Hosp, Chongqing Key Lab Intelligent Oncol Breast Canc iC, Dept Radiol, 181 Hanyu Rd, Chongqing 400030, Peoples R China
[2] Zhejiang Univ, Coll Biomed Engn & Instrument Sci, Dept Biomed Engn, Key Lab Biomed Engn,Minist Educ, Hangzhou, Peoples R China
[3] Chongqing Univ, Sch Med, Chongqing, Peoples R China
[4] Chongqing Univ, Canc Hosp, Dept Pathol, Chongqing, Peoples R China
[5] Siemens Healthineers, MR Collaborat, Chengdu, Peoples R China
基金
中国国家自然科学基金;
关键词
CELL-SIZE;
D O I
10.1148/radiol.240288
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Time-dependent diffusion MRI has the potential to help characterize tumor cell properties; however, to the knowledge of the authors, its usefulness for breast cancer diagnosis and prognostic evaluation is unknown. Purpose: To investigate the clinical value of time-dependent diffusion MRI-based microstructural mapping for noninvasive prediction of molecular subtypes and pathologic complete response (pCR) in participants with breast cancer. Materials and Methods: Participants with invasive breast cancer who underwent pretreatment with time-dependent diffusion MRI between February 2021 and May 2023 were prospectively enrolled. Four microstructural parameters were estimated using the IMPULSED method (a form of time-dependent diffusion MRI), along with three apparent diffusion coefficient (ADC) measurements and a relative ADC diffusion-weighted imaging parameter. Multivariable logistic regression analysis was used to identify parameters associated with each molecular subtype and pCR. A predictive model based on associated parameters was constructed, and its performance was assessed using the area under the receiver operating characteristic curve (AUC) and compared by using the DeLong test. The time-dependent diffusion MRI parameters were validated based on correlation with pathologic measurements. Results: The analysis included 408 participants with breast cancer (mean age, 51.9 years +/- 9.1 [SD]). Of these, 221 participants were administered neoadjuvant chemotherapy and 54 (24.4%) achieved pCR. The time-dependent diffusion MRI parameters showed reasonable performance in helping to identify luminal A (AUC, 0.70), luminal B (AUC, 0.78), and triple-negative breast cancer (AUC, 0.72) subtypes and high performance for human epidermal growth factor receptor 2 (HER2)-enriched breast cancer (AUC, 0.85), outperforming ADC measurements (all P < .05). Progesterone receptor status (odds ratio [OR], 0.08; P = .02), HER2 status (OR, 3.36; P = .009), and the cellularity index (OR, 0.01; P = .02) were independently associated with the odds of achieving pCR. The combined model showed high performance for predicting pCR (AUC, 0.88), outperforming ADC measurements and the clinical-pathologic model (AUC, 0.73 and 0.79, respectively; P < .001). The time-dependent diffusion MRI-estimated parameters correlated well with the pathologic measurements (n = 100; r = 0.67-0.81; P < .001). Conclusion: Time-dependent diffusion MRI-based microstructural mapping was an effective method for helping to predict molecular subtypes and pCR to neoadjuvant chemotherapy in participants with breast cancer. (c) RSNA, 2024
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Diffusion-weighted MRI in pretreatment prediction of response to neoadjuvant chemotherapy in patients with breast cancer
    Richard, Raphael
    Thomassin, Isabelle
    Chapellier, Marion
    Scemama, Aurelie
    de Cremoux, Patricia
    Varna, Mariana
    Giacchetti, Sylvie
    Espie, Marc
    de Kerviler, Eric
    de Bazelaire, Cedric
    EUROPEAN RADIOLOGY, 2013, 23 (09) : 2420 - 2431
  • [32] Diffusion-weighted MRI in pretreatment prediction of response to neoadjuvant chemotherapy in patients with breast cancer
    Raphael Richard
    Isabelle Thomassin
    Marion Chapellier
    Aurélie Scemama
    Patricia de Cremoux
    Mariana Varna
    Sylvie Giacchetti
    Marc Espié
    Eric de Kerviler
    Cedric de Bazelaire
    European Radiology, 2013, 23 : 2420 - 2431
  • [33] Assessment of diffusion-weighted MRI in predicting response to neoadjuvant chemotherapy in breast cancer patients
    Nathalie A. Hottat
    Dominique A. Badr
    Sophie Lecomte
    Tatiana Besse-Hammer
    Jacques C. Jani
    Mieke M. Cannie
    Scientific Reports, 13 (1)
  • [34] Assessment of diffusion-weighted MRI in predicting response to neoadjuvant chemotherapy in breast cancer patients
    Hottat, Nathalie A.
    Badr, Dominique A.
    Lecomte, Sophie
    Besse-Hammer, Tatiana
    Jani, Jacques C.
    Cannie, Mieke M.
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [35] Differential response from neoadjuvant chemotherapy across breast cancer subtypes
    Jinno, H.
    Matsuda, S.
    Hayashida, T.
    Takahashi, M.
    Sakata, M.
    Ikeda, T.
    Mukai, M.
    Kitagawa, Y.
    JOURNAL OF CLINICAL ONCOLOGY, 2010, 28 (15)
  • [36] Can breast MRI predict pathologic response following neoadjuvant chemotherapy for breast cancer? A retrospective cohort study
    Kwak, Lily
    Santa -Maria, Cesar
    Di Carlo, Philip
    Mullen, Lisa A.
    Myers, Kelly S.
    Oluyemi, Eniola
    Panigrahi, Babita
    Rossi, Joanna
    Ambinder, Emily B.
    CLINICAL IMAGING, 2023, 101 : 105 - 112
  • [37] Functional MRI to monitor breast cancer response to neoadjuvant chemotherapy
    Delille, JJ
    Sianetz, PJ
    Yeh, ED
    Foley, MT
    Kopans, DB
    Garrido, L
    RADIOLOGY, 2000, 217 : 525 - 525
  • [38] Prediction of the treatment response to neoadjuvant chemotherapy in breast cancer by subtypes using tumor infiltrating lymphocytes
    Kashiwagi, S.
    Asano, Y.
    Goto, W.
    Morisaki, T.
    Noda, S.
    Takashima, T.
    Onoda, N.
    Hirakawa, K.
    CANCER RESEARCH, 2016, 76
  • [39] BluePrint molecular subtypes predict response to neoadjuvant pertuzumab in HER2-positive breast cancer
    M. C. Liefaard
    A. van der Voort
    M. S. van Ramshorst
    J. Sanders
    S. Vonk
    H. M. Horlings
    S. Siesling
    L. de Munck
    A. E. van Leeuwen
    M. Kleijn
    L. Mittempergher
    M. M. Kuilman
    A. M. Glas
    J. Wesseling
    E. H. Lips
    G. S. Sonke
    Breast Cancer Research, 25
  • [40] BluePrint molecular subtypes predict response to neoadjuvant pertuzumab in HER2-positive breast cancer
    Liefaard, M. C.
    van der Voort, A.
    van Ramshorst, M. S.
    Sanders, J.
    Vonk, S.
    Horlings, H. M.
    Siesling, S.
    de Munck, L.
    van Leeuwen, A. E.
    Kleijn, M.
    Mittempergher, L.
    Kuilman, M. M.
    Glas, A. M.
    Wesseling, J.
    Lips, E. H.
    Sonke, G. S.
    BREAST CANCER RESEARCH, 2023, 25 (01)