Machine learning for prediction of ventricular arrhythmia episodes from intracardiac electrograms of automatic implantable cardioverter-defibrillators

被引:1
|
作者
Cha, Yong-Mei [1 ]
Attia, Itzhak Zachi [1 ]
Metzger, Coby [2 ]
Lopez-Jimenez, Francisco [1 ]
Tan, Nicholas Y. [1 ]
Cruz, Jessica [1 ]
Upadhyay, Gaurav A. [3 ]
Mullane, Steven [4 ]
Harrell, Camden [4 ]
Kinar, Yaron
Sedelnikov, Ilya [2 ]
Lerman, Amir [1 ]
Friedman, Paul A. [1 ]
机构
[1] Mayo Clin, Dept Cardiovasc Med, 200 First St SW, Rochester, MN 55905 USA
[2] Medial EarlySign, Hod Hasharon, Israel
[3] Univ Chicago Med, Dept Cardiol, Chicago, IL USA
[4] Biotronik Inc, Lake Oswego, OR USA
关键词
Implantable cardioverter-defibrillator; Artificial intelligence; Machine learning; Ventricular tachycardia; Ventricular fi brillation; Sudden cardiac death; ANTIARRHYTHMIC-DRUG THERAPY; CARDIAC-ARREST; RISK;
D O I
10.1016/j.hrthm.2024.05.040
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND Despite effectiveness of the implantable cardioverter-defibrillator (ICD) in saving patients with life-threatening ventricular arrhythmias (VAs), the temporal occurrence of VA after ICD implantation is unpredictable. OBJECTIVE The study aimed to apply machine learning (ML) to intracardiac electrograms (IEGMs) recorded by ICDs as a unique biomarker for predicting impending VAs. METHODS The study included 13,516 patients who received Biotronik ICDs and enrolled in the CERTITUDE registry between January 1, 2010, and December 31, 2020. Database extraction included IEGMs from standard quarterly transmissions and VA event episodes. The processed IEGM data were pulled from device transmissions stored in a centralized Home Monitoring Service Center and reformatted into an analyzable format. Long-range (baseline or fi rst scheduled remote recording), mid-range (scheduled remote recording every 90 days), or short-range predictions (IEGM within 5 seconds before the VA onset) were used to determine whether ML-processed IEGMs predicted impending VA events. Convolutional neural network classifiers using ResNet architecture were employed. RESULTS Of 13,516 patients (male, 72%; age, 67.5 6 11.9 years), 301,647 IEGM recordings were collected; 27,845 episodes of sustained ventricular tachycardia or ventricular fi brillation were observed in 4467 patients (33.0%). Neural networks based on convolutional neural networks using ResNet-like architectures on far-field IEGMs yielded an area under the curve of 0.83 with a 95% confidence interval of 0.79-0.87 in the short term, whereas the long-range and mid-range analyses had minimal predictive value for VA events. CONCLUSION In this study, applying ML to ICD-acquired IEGMs predicted impending ventricular tachycardia or ventricular fi brillation events seconds before they occurred, whereas midterm to long-term predictions were not successful. This could have important implications for future device therapies.
引用
收藏
页码:2295 / 2302
页数:8
相关论文
共 50 条
  • [41] Artificial intelligence for detection of ventricular oversensing: Machine learning approaches for noise detection within nonsustained ventricular tachycardia episodes remotely transmitted by pacemakers and implantable cardioverter-defibrillators
    Strik, Marc
    Sacristan, Benjamin
    Bordachar, Pierre
    Duchateau, Josselin
    Eschalier, Romain
    Mondoly, Pierre
    Laborderie, Julien
    Gassa, Narimane
    Zemzemi, Nejib
    Laborde, Maxime
    Garrido, Juan
    Perabla, Clara Matencio
    Jimenez-Perez, Guillermo
    Camara, Oscar
    Haissaguerre, Michel
    Dubois, Remi
    Ploux, Sylvain
    HEART RHYTHM, 2023, 20 (10) : 1378 - 1384
  • [42] Cardiac death and stored electrograms in patients with third-generation implantable cardioverter-defibrillators
    Grubman, EM
    Pavri, BB
    Shipman, T
    Britton, N
    Kocovic, DZ
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 1998, 32 (04) : 1056 - 1062
  • [43] POTENTIAL HAZARDS OF FIXED GAIN SENSING AND ARRHYTHMIA RECONFIRMATION FOR IMPLANTABLE CARDIOVERTER-DEFIBRILLATORS
    SINGER, I
    ADAMS, L
    AUSTIN, E
    PACE-PACING AND CLINICAL ELECTROPHYSIOLOGY, 1993, 16 (05): : 1070 - 1084
  • [44] Implantation of Implantable Cardioverter-Defibrillators from an Ileofemoral Approach
    Christian Perzanowski
    Pamela Timothy
    Molly McAfee
    Martin McDaniel
    David Meyer
    Vilma Torres
    Journal of Interventional Cardiac Electrophysiology, 2004, 11 : 155 - 159
  • [45] Salvage of Pacemakers and Automatic Implantable Cardioverter-Defibrillators Using Dermis Grafts
    Rudolph, Ross
    Smith, Michael R.
    Curtis, Guy P.
    ANNALS OF THORACIC SURGERY, 2011, 91 (02): : 452 - 456
  • [46] Implantation of implantable cardioverter-defibrillators from an ileofemoral approach
    Perzanowski, C
    Timothy, P
    McAfee, M
    McDaniel, M
    Meyer, D
    Torres, V
    JOURNAL OF INTERVENTIONAL CARDIAC ELECTROPHYSIOLOGY, 2004, 11 (02) : 155 - 159
  • [47] Characteristics of ventricular intracardiac electrograms of ventricular tachycardias originating from the epicardia in patients with an implantable cardioverter defibrillator
    Kawamura, Iwanari
    Fukamizu, Seiji
    Arai, Marina
    Inagaki, Dai
    Miyabe, Tomonori
    Miyazawa, Satoshi
    Kitamura, Takeshi
    Hojo, Rintaro
    Nishizaki, Mitsuhiro
    Sakurada, Harumizu
    Hiraoka, Masayasu
    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 2019, 30 (04) : 575 - 581
  • [48] Are Implantable Cardioverter-Defibrillators Indicated in Pediatric Ventricular Assist Device Patients?
    Bulic, A.
    Ceresnak, S.
    Dykes, J. C.
    Chen, S.
    Motonaga, K.
    Rosenthal, D. N.
    Almond, C. S.
    Kaufman, B. D.
    Hollander, S. A.
    Maeda, K.
    Laroussi, N. A.
    Hanisch, D.
    Trela, A. V.
    Murray, J. M.
    Dubin, A. M.
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2017, 36 (04): : S36 - S36
  • [49] AUTOMATIC IMPLANTABLE CARDIOVERTER-DEFIBRILLATORS - INDICATIONS FOR IMPLANTATION AND CLINICAL-RESULTS
    ULBRICHT, LJ
    EMMERICH, K
    PROBST, H
    KRAKAU, I
    GULKER, H
    ZEITSCHRIFT FUR KARDIOLOGIE, 1995, 84 : 127 - 136
  • [50] Drugs or implantable cardioverter-defibrillators in patients with poor left ventricular function?
    Block, M
    Hammel, D
    Bocker, D
    Borggrefe, M
    Breithardt, G
    AMERICAN JOURNAL OF CARDIOLOGY, 1996, 78 (5A): : 62 - 68