Predicting Persistent AKI Using Machine Learning: A Multicenter External Validation Study

被引:0
|
作者
Kashani, Kianoush [1 ]
Zappala, Simone [2 ]
Alfieri, Francesca [2 ]
Ancona, Andrea [2 ]
机构
[1] Mayo Clin Minnesota, Rochester, MN USA
[2] U Care Med Srl, Turin, Italy
来源
关键词
D O I
10.1681/ASN.20244g6622p2
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
FR-PO082
引用
收藏
页数:2
相关论文
共 50 条
  • [41] Predicting peritumoral edema development after gamma knife radiosurgery of meningiomas using machine learning methods: a multicenter study
    Xuanxuan Li
    Yiping Lu
    Li Liu
    Dongdong Wang
    Yajing Zhao
    Nan Mei
    Daoying Geng
    Xin Ma
    Weiwei Zheng
    Shaofeng Duan
    Pu-Yeh Wu
    Hongkai Wen
    Yongli Tan
    Xiaogang Sun
    Shibin Sun
    Zhiwei Li
    Tonggang Yu
    Bo Yin
    European Radiology, 2023, 33 : 8912 - 8924
  • [42] Comparable performance of machine learning algorithms in predicting readmission and complications following total joint arthroplasty with external validation
    Hashim J. F. Shaikh
    Mina Botros
    Gabriel Ramirez
    Caroline P. Thirukumaran
    Benjamin Ricciardi
    Thomas G. Myers
    Arthroplasty, 5
  • [43] Comparable performance of machine learning algorithms in predicting readmission and complications following total joint arthroplasty with external validation
    Shaikh, Hashim J. F.
    Botros, Mina
    Ramirez, Gabriel
    Thirukumaran, Caroline P.
    Ricciardi, Benjamin
    Myers, Thomas G.
    ARTHROPLASTY, 2023, 5 (01)
  • [44] Development and external validation of a machine learning-based model to predict postoperative recurrence in patients with duodenal adenocarcinoma: a multicenter, retrospective cohort study
    Liu, Xu
    Xiao, Qifeng
    Gu, Zongting
    Wu, Xin
    Yuan, Chunhui
    Tang, Xiaolong
    Meng, Fanbin
    Wang, Dong
    Lang, Ren
    Guo, Kaiqing
    Tian, Xiaodong
    Zhang, Yu
    Zhao, Enhong
    Wu, Zhenzhou
    Xu, Jingyong
    Xing, Ying
    Cao, Feng
    Wang, Chengfeng
    Zhang, Jianwei
    BMC MEDICINE, 2025, 23 (01):
  • [45] Development and Validation of Nomogram for Predicting Survival of Primary Liver Cancers Using Machine Learning
    Chen, Rui
    Hou, Beining
    Qiu, Shaotian
    Shao, Shuai
    Yu, Zhenjun
    Zhou, Feng
    Guo, Beichen
    Li, Yuhan
    Zhang, Yingwei
    Han, Tao
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [46] Predicting the Priority of a Reported Bug using Machine Learning Techniques and Cross Project Validation
    Sharma, Meera
    Bedi, Punam
    Chaturvedi, K. K.
    Singh, V. B.
    2012 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA), 2012, : 539 - 545
  • [47] Performance of Doppler-based resistive index and semi-quantitative renal perfusion in predicting persistent AKI: results of a prospective multicenter study
    Michael Darmon
    Aurelie Bourmaud
    Marie Reynaud
    Stéphane Rouleau
    Ferhat Meziani
    Alexandra Boivin
    Mourad Benyamina
    François Vincent
    Alexandre Lautrette
    Christophe Leroy
    Yves Cohen
    Matthieu Legrand
    Jérôme Morel
    Jeremy Terreaux
    David Schnell
    Intensive Care Medicine, 2018, 44 : 1904 - 1913
  • [48] Performance of Doppler-based resistive index and semi-quantitative renal perfusion in predicting persistent AKI: results of a prospective multicenter study
    Darmon, Michael
    Bourmaud, Aurelie
    Reynaud, Marie
    Rouleau, Stephane
    Meziani, Ferhat
    Boivin, Alexandra
    Benyamina, Mourad
    Vincent, Francois
    Lautrette, Alexandre
    Leroy, Christophe
    Cohen, Yves
    Legrand, Matthieu
    Morel, Jerome
    Terreaux, Jeremy
    Schnell, David
    INTENSIVE CARE MEDICINE, 2018, 44 (11) : 1904 - 1913
  • [49] Predicting the Loan Using Machine Learning
    Yamparala, Rajesh
    Saranya, Jonnakuti Raja
    Anusha, Papanaboina
    Pragathi, Saripudi
    Sri, Panguluri Bhavya
    SOFT COMPUTING FOR SECURITY APPLICATIONS, ICSCS 2022, 2023, 1428 : 701 - 712
  • [50] Predicting Phospholipidosis Using Machine Learning
    Lowe, Robert
    Glen, Robert C.
    Mitchell, John B. O.
    MOLECULAR PHARMACEUTICS, 2010, 7 (05) : 1708 - 1714