Revealing the molecular mechanism of baohuoside I for the treatment of breast cancer based on network pharmacology and molecular docking

被引:1
|
作者
Mu, Junjie [1 ]
Li, Ying [1 ]
Chen, Qiuxiong [1 ]
Xiao, Yujie [1 ]
Hu, Min [1 ]
He, Ziyue [1 ]
Zeng, Jun [1 ]
Ding, Yiling [3 ]
Song, Pengyang [4 ]
He, Xiao [5 ]
Yang, Xian [1 ]
Zhang, Xue [2 ]
机构
[1] Chongqing Normal Univ, Engn Res Ctr Biotechnol Act Subst, Minist Educ, Chongqing 401331, Peoples R China
[2] Chongqing Med & Pharmaceut Coll, Chongqing 401331, Peoples R China
[3] Pengshui Cty Forestry Bur, Chongqing 409600, Peoples R China
[4] Wansheng Econ & Technol Dev Zone Planning & Nat Re, Chongqing 400800, Peoples R China
[5] Chongqing Three Gorges Med Coll, Chongqing 404120, Peoples R China
关键词
Breast cancer; Baohuoside I; Network pharmacology; Molecular docking; EGFR inhibition; Cell apoptosis; TRADITIONAL CHINESE MEDICINE; PATHWAY; CELLS;
D O I
10.1016/j.jep.2024.118918
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Ethnopharmacological relevance: In Traditional Chinese Medicine (TCM), there are many prescriptions for treating breast cancer (BC) that utilize the herb Epimedium brevicornum Maxim, which warms and replenishes kidney yang. Baohuoside I (BI) is a flavonoid compound found in Epimedium brevicornum Maxim. As a single glycoside, it is not easily hydrolyzed in the intestine and is typically absorbed as a precursor. As a natural product with potential anti-cancer properties, studies have shown that BI possesses anti-cancer activity and can inhibit the invasion and migration of BC cells. However, its underlying mechanisms remain unclear, thus further research is needed to validate its modern mechanisms for traditional uses. Aim of the study: This study aimed to explore the regulatory mechanism of BI in the signaling pathways of BC cells through network pharmacology (NP), molecular docking (MD) techniques and cellular experiments. Methods: Potential targets were predicted using public databases, and a protein-protein interaction (PPI) network was constructed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed. Key signaling pathways were validated through MD techniques, cellular experiments, RNA interference and Western blot (WB) analysis. Results: Treatment-associated targets included SRC, MAPK1, HSP90AA1, PIK3CA, TP53, AKT1, and EGFR. GO enrichment, KEGG enrichment analyses, and MD results indicated that BI exerts its anti-breast cancer effects by inhibiting the tyrosine kinase activity of EGFR, as well as through downstream MAPK signaling pathway and PI3K-Akt signaling pathway pathways. In vitro experiments confirmed that BI primarily induce cell apoptosis through the EGFR-mediated MAPK signaling pathway and PI3K-Akt signaling pathway. Conclusion: BI can inhibit EGFR activation and promote BC cell apoptosis through the MAPK signaling pathway and PI3K-Akt signaling pathway, thereby exerting therapeutic effects on BC. This study not only provides
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Molecular mechanism of Bai-Bo Formula for treatment of vitiligo based on network pharmacology and molecular docking
    Zhang, Kaibo
    Zhang, Bin
    Song, Yeqiang
    CELLULAR AND MOLECULAR BIOLOGY, 2023, 69 (05) : 19 - 25
  • [32] Molecular Mechanism of Crataegi Folium and Alisma Rhizoma in the Treatment of Dyslipidemia Based on Network Pharmacology and Molecular Docking
    Wang, Hui
    Wang, Hua
    Zhang, Jin
    Luo, Jiahui
    Peng, Caidong
    Tong, Xiaoyun
    Chen, Xudong
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2022, 2022
  • [33] Molecular mechanism of Acanthopanax senticosus in the treatment of Alzheimer's disease based on network pharmacology and molecular docking
    Kuang, Feng
    Xiang, Tao
    MOLECULAR DIVERSITY, 2023, 27 (06) : 2849 - 2865
  • [34] Exploring the mechanism of andrographolide in the treatment of gastric cancer through network pharmacology and molecular docking
    Ravi Prakash Yadav
    Susanta Sadhukhan
    Makhan Lal Saha
    Sudakshina Ghosh
    Madhusudan Das
    Scientific Reports, 12
  • [35] Network pharmacology and molecular docking to elucidate the mechanism of pulsatilla decoction in the treatment of colon cancer
    Liu, Huan
    Hu, Yuting
    Qi, Baoyu
    Yan, Chengqiu
    Wang, Lin
    Zhang, Yiwen
    Chen, Liang
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [36] Molecular mechanism of celastrol in the treatment of systemic lupus erythematosus based on network pharmacology and molecular docking technology
    Song Xinqiang
    Zhang Yu
    Yang Ningning
    Dai Erqin
    Wang Lei
    Du Hongtao
    LIFE SCIENCES, 2020, 240
  • [37] Potential Molecular Mechanism of Yishen Capsule in the Treatment of Diabetic Nephropathy Based on Network Pharmacology and Molecular Docking
    Hu, Yaling
    Liu, Shuang
    Liu, Wenyuan
    Zhang, Ziyuan
    Liu, Yuxiang
    Li, Sufen
    Sun, Dalin
    Zhang, Guang
    Fang, Jingai
    DIABETES METABOLIC SYNDROME AND OBESITY-TARGETS AND THERAPY, 2022, 15 : 943 - 962
  • [38] Investigation of the molecular mechanism of Xiangsha Liujun Pill in the treatment of gastritis based on network pharmacology and molecular docking
    Wei, Jiaen
    Li, Zhengxiu
    Tang, Tingting
    Yu, Ruolan
    Cao, Xuejing
    Liu, Yong
    Huang, Zunnan
    Research Square, 2023,
  • [39] Molecular mechanism of Acanthopanax senticosus in the treatment of Alzheimer’s disease based on network pharmacology and molecular docking
    Feng Kuang
    Tao Xiang
    Molecular Diversity, 2023, 27 : 2849 - 2865
  • [40] Molecular mechanism of Rhubarb in the treatment of non-small cell lung cancer based on network pharmacology and molecular docking technology
    Tan, Ye-Ru
    Lu, Yu
    MOLECULAR DIVERSITY, 2023, 27 (03) : 1437 - 1457