Real Time Malicious Drone Detection Using Deep Learning on FANETs

被引:0
|
作者
Yapicioglu, Cengizhan [1 ,2 ]
Demirci, Mehmet [1 ]
Akcayol, M. Ali [1 ]
机构
[1] Gazi Univ, Dept Comp Engn, Ankara, Turkiye
[2] ASELSAN INC, Ankara, Turkiye
关键词
Computer Vision; Object Detection; Deep learning; CNN; image processing; FANET; Drone Networks; ATTACKS;
D O I
10.1109/BLACKSEACOM61746.2024.10646316
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Unmanned aerial vehicles, especially drones, are increasingly used for transportation, communication and military purposes. Using only one drone to accomplish a mission leads to a solution that is costly and has low error tolerance. For this reason, a network structure called Flying Ad-Hoc Networks (FANET) organize drones with a task sharing mechanism to lower cost. However, these networks remain vulnerable to various attacks due to vulnerabilities such as the use of civilian drones, use of unencrypted GPS signals, physical attacks using malicious drones, etc. Solutions to these attacks should consider the limited memory and calculation capabilities of drones. In this study, drone detection and subsequent classification of malicious drones, which are potential sources of man-in-the-middle or physical attacks, were implemented based on real images that can be captured by the drone camera. You Only Look Once (YOLO) detection algorithm was used in the drone detection phase and a Convolutional Neural Network model was used in the classification phase. In the study, a dataset consisting of 4 classes (Yuneec Typhon, DJI Tello, DJI Phantom 4 and Other) was created using internet resources and YouTube videos, and the classification success was measured as 88.78%.
引用
收藏
页码:242 / 247
页数:6
相关论文
共 50 条
  • [41] Building and Infrastructure Defect Detection and Visualization Using Drone and Deep Learning Technologies
    Jiang, Yuhan
    Han, Sisi
    Bai, Yong
    JOURNAL OF PERFORMANCE OF CONSTRUCTED FACILITIES, 2021, 35 (06)
  • [42] A Study on Realtime Drone Object Detection Using On-board Deep Learning
    Lee, Jang-Woo
    Kim, Joo-Young
    Kim, Jae-Kyung
    Kwon, Cheol-Hee
    JOURNAL OF THE KOREAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, 2021, 49 (10) : 883 - 892
  • [43] Malicious Website Detection Through Deep Learning Algorithms
    Gutierrez, Norma
    Otero, Beatriz
    Rodriguez, Eva
    Canal, Ramon
    MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE (LOD 2021), PT I, 2022, 13163 : 512 - 526
  • [44] A Robust Framework for Real-Time Iris Landmarks Detection Using Deep Learning
    Adnan, Muhammad
    Sardaraz, Muhammad
    Tahir, Muhammad
    Dar, Muhammad Najam
    Alduailij, Mona
    Alduailij, Mai
    APPLIED SCIENCES-BASEL, 2022, 12 (11):
  • [45] Real Time Car Model and Plate Detection System by Using Deep Learning Architectures
    Mustafa, Twana
    Karabatak, Murat
    IEEE ACCESS, 2024, 12 : 107616 - 107630
  • [46] A Real-Time Parking Space Occupancy Detection Using Deep Learning Model
    Prova, Raktim Raihan
    Shinha, Title
    Pew, Anamika Basak
    Rahman, Rashedur M.
    2022 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS), 2022, : 51 - 57
  • [47] Sleep Deprivation Detection for Real-Time Driver Monitoring Using Deep Learning
    Garcia-Garcia, Miguel
    Caplier, Alice
    Rombaut, Michele
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2018), 2018, 10882 : 435 - 442
  • [48] Real-time Face Mask Detection Using Deep Learning on Embedded Systems
    Lopez, Vidal Wyatt M.
    Abu, Patricia Angela R.
    Estuar, Ma Regina Justina E.
    2021 3RD INTERNATIONAL CONFERENCE ON ELECTRICAL, CONTROL AND INSTRUMENTATION ENGINEERING (IEEE ICECIE'2021), 2021,
  • [49] Real-Time Automatic Ejection Fraction and Foreshortening Detection Using Deep Learning
    Smistad, Erik
    Ostvik, Andreas
    Salte, Ivar Mjaland
    Melichova, Daniela
    Nguyen, Thuy Mi
    Haugaa, Kristina
    Brunvand, Harald
    Edvardsen, Thor
    Leclerc, Sarah
    Bernard, Olivier
    Grenne, Bjornar
    Lovstakken, Lasse
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2020, 67 (12) : 2595 - 2604
  • [50] Real-Time Detection of Strawberry Ripeness Using Augmented Reality and Deep Learning
    Chai, Jackey J. K.
    Xu, Jun-Li
    O'Sullivan, Carol
    SENSORS, 2023, 23 (17)