Differentially Private K-Means Publishing with Distributed Dimensions

被引:0
|
作者
Zhu, Boyu [1 ]
Zhang, Yuan [1 ]
Chen, Tingting [2 ]
Zhong, Sheng [1 ]
机构
[1] Nanjing Univ, State Key Lab Novel Software Technol, Comp Sci & Technol Dept, Nanjing, Peoples R China
[2] Calif State Polytech Univ Pomona, Dept Comp Sci, Coll Sci, Pomona, CA USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
D O I
10.1109/CSCWD61410.2024.10580021
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we address the critical concerns related to dataset privacy in the context of k-means clustering publishing within a distributed dimension setting. By leveraging differential privacy mechanisms, we propose a novel framework that integrates a differentially private classifier, constructed through voting based on raw clustering results, and an enhanced generative adversarial network (GAN) simulating the classifier's behavior in inferring class labels for a public dataset. Our approach generates synthetic clustering results that mimic real outcomes in classification tasks, ensuring differential privacy and minimizing noise. Our contributions include a comprehensive exploration of privacy issues, the introduction of a novel privacy-preserving k-means clustering framework, and theoretical analyses demonstrating sensitivity and differential privacy guarantees. Evaluation on the MNIST dataset demonstrates the effectiveness of the framework, achieving 82.22% accuracy with a (10.48, 10-9)-differential-privacy guarantee, compared to 83.45% accuracy without privacy-preserving.
引用
收藏
页码:3263 / 3268
页数:6
相关论文
共 50 条
  • [31] A distributed framework for trimmed Kernel k-Means clustering
    Tsapanos, Nikolaos
    Tefas, Anastasios
    Nikolaidis, Nikolaos
    Pitas, Ioannis
    PATTERN RECOGNITION, 2015, 48 (08) : 2685 - 2698
  • [32] K-means - a fast and efficient K-means algorithms
    Nguyen C.D.
    Duong T.H.
    Nguyen, Cuong Duc (nguyenduccuong@tdt.edu.vn), 2018, Inderscience Publishers, 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (11) : 27 - 45
  • [33] Near-Optimal Explainable k-Means for All Dimensions
    Charikar, Moses
    Hu, Lunjia
    PROCEEDINGS OF THE 2022 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2022, : 2580 - 2606
  • [34] Differentially private multidimensional data publishing
    Khalil Al-Hussaeni
    Benjamin C. M. Fung
    Farkhund Iqbal
    Junqiang Liu
    Patrick C. K. Hung
    Knowledge and Information Systems, 2018, 56 : 717 - 752
  • [35] Differentially Private Timestamps Publishing in Trajectory
    Yan, Liang
    Wang, Hao
    Wang, Zhaokun
    Wu, Tingting
    Fu, Wandi
    Zhang, Xu
    ELECTRONICS, 2023, 12 (02)
  • [36] Differentially private multidimensional data publishing
    Al-Hussaeni, Khalil
    Fung, Benjamin C. M.
    Iqbal, Farkhund
    Liu, Junqiang
    Hung, Patrick C. K.
    KNOWLEDGE AND INFORMATION SYSTEMS, 2018, 56 (03) : 717 - 752
  • [37] Exact Acceleration of K-Means plus plus and K-Means∥
    Raff, Edward
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 2928 - 2935
  • [38] K-Means Cloning: Adaptive Spherical K-Means Clustering
    Hedar, Abdel-Rahman
    Ibrahim, Abdel-Monem M.
    Abdel-Hakim, Alaa E.
    Sewisy, Adel A.
    ALGORITHMS, 2018, 11 (10):
  • [39] Distributed K-Means clustering guaranteeing local differential privacy
    Xia, Chang
    Hua, Jingyu
    Tong, Wei
    Zhong, Sheng
    COMPUTERS & SECURITY, 2020, 90
  • [40] A Distributed K-means Clustering Algorithm in Wireless Sensor Networks
    Zhou, Jin
    Zhang, Yuan
    Jiang, Yuyan
    Chen, C. L. Philip
    Chen, Long
    2015 INTERNATIONAL CONFERENCE ON INFORMATIVE AND CYBERNETICS FOR COMPUTATIONAL SOCIAL SYSTEMS (ICCSS), 2015, : 26 - 30